[The link
to open theses is accessible only from within the University of Osnabrück.]
Please contact me if you are interested!
Further Down this Page ...
- FAQ: Format and Size of a Thesis
- FAQ: What's in a Thesis Exposé?
- About Reproducibility (a non-FAQ, sadly)
- Past Theses
To start with something obvious, yet sometimes violated as we had to learn recently,
a thesis has to be written according to the ethical
principles of good scientific practice.
A short paper (in German) about this is available under
this
link (Gemeinsames Positionspapier das Allgemeinen Fakultätentags,
der Fakultätentage und des Deutschen Hochschulverbands, 9.7.2012).
Theses differ in breadth, depth, and size, depending on the grade they
are for, i.e., Bachelor, Master, Diploma, or Doctoral thesis, but
their structure is essentially the same:
- Introduction: Summarize scientific and/or
application background, formulate precisely the scientific and/or technical
problem that the thesis tackles,
state clearly the contribution that the thesis makes (YES, even in the
introduction – the reader has a right to know what is in the
thesis in order to decide whether s/he considers it worth reading),
outline thesis structure.
- State of the art: Review in necessary depth and breadth the
literature, systems etc. that existed before the thesis has started,
i.e., the body of scientific knowledge that the thesis sets out to
improve at some point.
- Technical part: The main part of the thesis describing your
contribution – its internal structure differs wildly over
different theses, depending
on what the contribution actually is.
- Summary, Conclusion, Outlook: The wrap-up part reformulating the
contribution, drawing conclusions, if there are any (a summary is
not the same thing like a conclusion!), and sketching open issues
(only dumb or ingenious theses claim to have solved everything in
their ballpark – decide yourself whether you want me to judge
your thesis between these two categories!).
Unless you have had some prior instruction about how to write a thesis, you should give
this matter a bit of thought. There are three things to do here:
- Ask your instructor.
- Read prior theses. I have never understood candidates setting out
for writing a thesis who tell me they have never before seen other
peoples' theses (and don't even seem to find that
puzzling). "Humans are case-based" (Roger Schank). Act human-like!
- Get yourself some guidance. There's tons of stuff out on the Web
and on the bookmarket about how to write theses.
A point to start
with may be the book by Balzert et al. "Wissenschaftliches Arbeiten" (in German)
available in the library.
And how long should my thesis be?
There is no fixed rule about that ("If a Bachelor thesis has 90
pages, then it's probably an A" – no!). What matters is the
contents and the presentation, where writing concisely is a virtue, but
writing too scant means you won't be understood.
As a rough guidance, think of the following sizes as defaults:
- Bachelor thesis: 60 pages,
- Master or Diploma thesis: 80 pages,
- Doctoral thesis: 150 pages,
assuming common-sense formatting. Deviations of these default sizes are
welcome if they make sense. For example, if your topic is in image processing,
and your thesis contains many images, then it is very likely to be
significantly longer. On the other hand, if a bachelor candidate
manages to write down the proof that P is unequal to NP in
three pages, then he or she will most probably pass.
A point about formatting. You need not use LaTeX. However, if a
student/candidate in Informatics delivers a thesis in a layout that is
significantly worse than what TeX/LaTeX has been achieving since 40
years now, then s/he needs to explain that to me. (Remember: Science
is all about improving on existing results!) This is particularly true
for bibliographies that BibTeX would produce for you as a bibliography
has to be, without any further effort --
well, provided that you classify correctly the pieces of literature that you cite
and that you follow the error and warning messages that BibTeX would deliver you for free.
On Acknowledgements
Some candidates feel that they want to include some words of thanks in their theses.
If you do so, then put it between the Abstract and the Table of Contents.
You can do it, but you don't have to.
And here is a comment.
There are universities these days (after all the doctoral dissertation frauds of 2010/11 and later)
who think it appropriate to ban Acknowledgements from theses
to avoid the candidates' flattering the professors for better grading.
I don't agree with these universities, and I wonder what they think of their professors' mindsets.
Adding an appropriate acknowledgement if you feel grateful for something
is not flattery, but a question of style.
But think about what you acknowledge.
If your thesis project has gone well, your supervisors (professors or whatever academic ranks)
would normally have invested a lot of time in your work,
which we would have had other ways of spending, had it not been for your thesis.
However, mind that this is the work for which we get paid and which we have chosen voluntarily;
mind further that we normally pose thesis problems
that are of intrinsic scientific interest for us in the first place.
So, appreciate diligent thesis supervision, but don't be too astonished if you see it happen.
When thinking about what and who to thank for,
consider that a thesis is normally the end of some longer period of study.
If you have finished it successfully, it is primarily owing to your own work and perseverance,
which you have every reason to be proud of.
But usually, there are others who have made this possible for you:
By financing your study, by donating their time to you,
by tolerating your nerviness at exam time, or whatever.
Don't forget them in your acknowledgements, if you decide to insert some.
But note: A thesis is a public text, so it is no place for getting too personal --
not even in the acknowledgements!
And in an academic thesis, all parts have to be truthful.
That includes acknowledgements.
Acknowledge what is worth acknowledging, and exactly that.
When I accept to supervise a thesis (be it a Bachelor, Master, or Doctoral Thesis), I will
ask the candidate to produce, as the first milestone in the project, an exposé of his
or her thesis. Its size and the time available for producing it differ for the three types
of theses: For a Bachelor thesis, it should be available about 2-3 weeks after the formal
thesis start; for a Master thesis after 1 month; for a Doctoral thesis after 3 months.
However, the idea and structure are equal in all three cases.
A thesis is a one-person research project, and think of the exposé as a project
plan. It needs to answer the questions: What is the goal of the project? Where does it start
from? Why bother? What is the plan to run it in time? In terms of a research project and a
thesis exposé, this leads, more sternly, to the sections
- Title
- Have you ever seen in a supermarket a bottle with the label saying "Bottle"?
A can called "Can"? Yet, many students decide to call their theses exposé "Exposé".
That makes no sense -- "Exposé" could be or appear in the subtitle,
but the title should be the working(!) title of your planned thesis.
Working title means it may well change in wording and/or detail
while you are working on the subject for your thesis later until thesis submission,
but it should reflect clearly the main goal and/or contribution of the planned thesis.
Please don't forget to put your name on the exposé as the author!
- Goal
- Describe the goal of your work. This may concern an analytical result (e.g., proving that
P=/=NP), or an empirical one (e.g., examine the performance of the HAYAI algorithm on gravel
paths), or a constructive one (e.g., a new algorithm for
stereo matching of images taken in complete darkness),
or – most frequently for an Informatics thesis – a combination of the three
(e.g., a new 3D scan matching algorithm running in O(log log n) and its evaluation in a
botanical garden). Normally, the title of the thesis would reflect the goal.
- Scientific and/or technological background
- Give a sketch of the state of the art that your thesis sets out to improve. In an
exposé, the sketch has to be very short and to the point, mentioning exactly the top
most relevant papers. For a university thesis, the background includes stating which local
equipment and results you will use, if any (e.g., a Kurt3D robot running the HAYAI
algorithm).
- Approach
- If you have absolutely no idea where to start in order to reach your goal, you will
probably not make it in time for thesis submission. State here where you will start working.
In many cases (typically in Bachelor theses, often in Master theses), a particular approach
is enforced as part of the thesis topic that you get.
- Expected scientific and/or technological contribution
- State briefly in what respect you expect your result to be significant. It should somehow
improve on the state of the art, or provide new empirical data, or lead to a result that was
never there before.
- Work program
- Break down your thesis project into smaller steps and make a schedule what you plan to do
in which order and in what time. Plan in the order of weeks and months rather than days. If
possible and useful, formulate milestones, i.e., important intermediate results. Plan the
immediate future in more detail than the distant one.
Don't plan for doing all the technical work first,
and writing everything down from scratch in the last three weeks:
That will almost never work out!
Plan to interleave the reading/thinking/programming/experimenting and the writing.
The size and detail of the exposé varies with the type of thesis, according to the
calibre of the problem and the available project time. For a Bachelor thesis, think of 1-2
pages; for a Master thesis 2-3 pages; for a doctoral dissertation 5-6 pages.
The author of the exposé is the candidate, i.e., you! Why?: Your thesis supervisors
have normally an idea of the thesis topic that they give to you. Your formulation in the
exposé shall make sure that you have the same understanding of what you are supposed
to work on. Moreover, much of the exposé text may in fact go into your final thesis: a
typical introduction shares much of the material with your exposé, and you should have
written that yourself.
Be prepared, however,
to adjust your topic while working on it! In fact, this is the norm rather than the
exception, which leads to the final remark about the exposé: This is a plan for your thesis
work, and, like all plans in life, is subject to revision in detail! Don't hesitate to change
details of what your exposé says, if it turns out to be necessary. However, do
hesitate to change significantly the topic and approach of your thesis that you have described
in your exposé – before you do that, consult your instructors!
A valid scientific experiment has to be reproducible.
In Informatics, this norm is frequently violated, and even more often,
nobody seems to care about reproducing some particular experiment.
But that does not invalidate the norm.
For a good or even excellent thesis, this means:
If your thesis goals include empirical and/or constructive elements,
then your results need to be reproducible for others --
these may be your advisors, and, even better,
anybody who reads your thesis and wants to check your results or wants
to examine your examples by himself or herself.
So, if you write a program or a set of modules as a part of your thesis work,
please do make sure that they run at least on our lab computers
and that there is somebody of the staff who knows where the software is
and how it can be used.
Even better, write a little(!) simple(!) interface
(which may or may not be graphical) that allows at least your experiments
or test runs to be repeated, or, optimally, that gives everybody a chance
to do their own experiments or test runs with their own test data.
Frequently, bachelor or master candidates,
when facing texts from the literature,
complain that the reported results cannot be checked or easily varied;
and then, the same candidates would often deliver their own results
in exactly the same manner that they found so irritating about others' work.
That is inconsistent, isn't it?
And, what is worse: It is no sound science!
List of academic theses under my principal or major
supervision. Quite a number of them have led to joint publications in
the past. Please look at my publications under the names of the
authors of the past theses.
Doctoral dissertations
If you like: My previous Doc students in the
Mathematics Genealogy
- J. C. Saborío:
Relevance-based Online Planning in Complex POMDPs.
(U. Osnabrück, 07/2020,
UOS
repOSitorium publication)
- J.H. Schoenke:
Algorithms for scalable on-line machine learning on regression tasks.
(U. Osnabrück, 04/2019,
UOS
repOSitorium publication)
- S. Albrecht:
Transparent Object Reconstruction and Registration Confidence Measures for
3D Point Clouds based on Data Inconsistency and Viewpoint Analysis.
(U. Osnabrück, 02/2018,
UOS
repOSitorium publication)
- S. Stock:
Hierarchische hybride Planung für mobile Roboter
(U. Osnabrück, 03/2017,
UOS
repOSitorium publication)
- W. Strothmann:
Multi-wavelength laser line profile sensing for agricultural applications
(U. Osnabrück, 07/2016,
UOS
repOSitorium publication)
- T. Schüler:
Abstrakte virtuelle Illusionen für die Schlaganfalltherapie.
(U. Osnabrück, 11/2014,
UOS
repOSitorium publication,
published version,
Springer Vieweg 2015, Springer Link)
- S. Scheuren:
Prozessoptimierte Planung für kooperative mobile Roboter.
(U. Osnabrück, 07/2014,
UOS
repOSitorium publication)
- K. Lingemann:
Lokalisierung und Kartenbau mit mobilen Robotern.
(U. Osnabrück, 04/2014,
UOS
repOSitorium publication)
- Th. Wiemann:
Automatische Generierung dreidimensionaler Polygonkarten für mobile Roboter
(U. Osnabrück, 04/2013,
UOS
repOSitorium publication)
- R. Hartanto:
Fusing DL Reasoning with HTN Planning as a Deliberative Layer in Mobile Robotics
(U. Osnabrück, 09/2009,
UOS
repOSitorium publication,
published version,
Springer LNAI 6798, Springer Link)
- S. Stiene:
Multisensorfusion zur semantisch gestützten Navigation eines autonomen Assistenzroboters
(U. Osnabrück, 06/2009,
UOS
repOSitorium publication)
- Stefan May:
3D Time-of-Flight Ranging for Robotic Perception in Dynamic Environments
(U. Osnabrück, 03/2009)
vdi Verlag link
- I. Stratmann:
Omnidirectional Optical Flow and Visual Motion Detection for Autonomous Robot Navigation
(U. Osnabrück, 10/2007,
elib
publication, UOS)
- M. Hülse:
Multifunktionalität rekurrenter neuronaler Netze -- Synthese und Analyse
nichtlinearer Kontrolle autonomer Roboter (U. Osnabrück, 6/2006,
DISKI link)
- A. Nüchter:
Semantische dreidimensionale Karten für autonome mobile Roboter (U. Bonn, 5/2006,
DISKI link)
- S. Frintrop:
VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search (U. Bonn, 4/2005,
Published version, Springer LNAI 3899, Springer Link)
- F. Schönherr:
Verankerung der Semantik veränderlicher Situations-Fakten und
symbolischer Aktionen in der hybriden Roboterkontrollarchitektur
DD&P (U. Bonn, 6/2004,
online, Shaker)
- Th. Belker: Plan
Projection, Execution, and Learning for Mobile Robot Control (U. Bonn,
1/2004, online, U. Bonn)
- A.
Asteroth: Effiziente Identifikation parametrisierter Kreislaufmodelle (U. Bonn, 8/2000,
online, U. Bonn)
- F. Kirchner:
Hierarchical Q-Learning in Complex Robot Control Problems (U. Bonn, 6/1999)
- M. Contzen: Planen durch Dekompositionsabstraktion (U. Bonn, 4/1997)
- S. Thiébaux:
Contribution à la planification sous incertitude et en temps
contraint (U. Rennes, 6/1995)
Diploma/Master theses
Online material for theses of U. Osnabrück may be available over
the KBS Theses page.
- A. Dittmer:
Construction of a machine learning workflow for prediction of machine settings on basis of environmental data
(U. Osnabrück, 1/2020)
- A. Mock:
Monocular Localization in Feature-Annotated 3D Polygon Maps
(U. Osnabrück, 10/2019)
- M. Greshake:
Statistical Model Estimation for Automotive Radar Sensors
(U. Osnabrück, 6/2019)
- H. Wübben:
Generating Cross-Application Graphs for Planning Area-Covering Work Processes
(U. Osnabrück, 1/2019)
- C. Heiden:
Applicability of Anomaly Detection Techniques for High-Dimensional Time Series Data from Complex Industrial Plants: an Exploratory Analysis
(U. Osnabrück, 12/2018)
- H. Strüber:
Oberflächenrekonstruktion aus 3D Punktwolken mittels Growing Surface Structures
(U. Osnabrück, 1/2017)
- N. Niemann: Regelbasierte Instanziierung geometrischer Konzepte
zur Planbasierten Robotersteuerung
(U. Osnabrück, 1/2017)
- B. Kisliuk: 3D Volumenvermessung von bewegten Packstücken
(U. Osnabrück, 10/2016)
- J. Heitmann: Semantische Meshoptimierung für planare Umgebungen
(U. Osnabrück, 2/2016)
- S. Pütz: 3D Mappig and Navigation in Rough Terrain
(U. Osnabrück, 1/2016)
- T. Igelbrink: Online-Generierung von optimierten 3D-Polygonnetzen mit KinectFusion Large Scale
(U. Osnabrück, 1/2016)
- H. Deeken: Enabling Spatial Databases for Semantic Mapping (U. Osnabrück, 9/2015)
- D. Feldschnieders: 3D Packstückvolumenvermessung mit dem Microsoft Kinect V2 Sensor
(U. Osnabrück, 9/2015)
- M. Görner: Autonomous Tabletop Object Learning (U. Osnabrück, 8/2015)
- F. Otte: 3-Features to Aid Scan Registration (U. Osnabrück, 6/2015)
- T. Gedicke: FLAP for CAOS: Forward-Looking Active Perception for Clutter-Aware Object Search
(U. Osnabrück, 5/2015)
- A.-K. Häuser: Inferring Hidden World Parameters by Analyzing Observed Environment Changes
(U. Osnabrück, 9/2014)
- D. Röhr: Klassifizierung von Möbelstücken aus abstrakten Ebenengeometrien
(U. Osnabrück, 3/2014)
- A. Krüger: Effiziente Hindernisvermeidung für landwirtschaftliche Feldarbeitsgänge
(U. Osnabrück, 11/2013)
- F. Meyer: Automatic Building Detection and Segmentation using Airborne LiDAR Point Clouds for Solar Potential Analysis (U. Osnabrück, 4/2013)
- S.K. Schalk: Entwicklung eines Positionierungssystems für mobile Roboter
(U. Osnabrück, 12/2012)
- A. Sudau: Ontologiebasiertes Assistenzsystem zur Geschäftsprozessmodellierung
(U. Osnabrück, 12/2012)
- K.O. Rinnewitz: Automatische Zuordnung und Generierung von Texturen in 3D-Rekonstruktionen
(U. Osnabrück, 10/2012)
- J. Meyer: A Role-Exchangeable Mixed Reality Robotic Soccer Team Based on Swarms
(U. Osnabrück, 8/2012)
- T. Escher: Speicherverwaltung für Large-Scale Scanmatching mit Slam6D
(U. Osnabrück, 5/2012)
- P. Niermann: Reduzierung von Konflikten in der Anflugplanung (U. Osnabrück, 12/2011)
- S. Stock: Eine Untersuchung von BLNs als Umgebungsrepräsentation für Wissensbasierte Roboter
(U. Osnabrück, 11/2011)
- R. Kogelberg: Fusion von Tiefeninformation mit Farbwerten von digitalen Kamerabildern
(U. Osnabrück, 10/2011)
- C. Schwan: Using Logical Reasoning in Sensor Data Interpretation (U. Osnabrück, 03/2011)
- S. Albrecht: An Analysis of Visual Mono-SLAM
(U. Osnabrück, 10/2009)
- J. Sprickerhof:
Effizientes Schleifenschließen mit sechs Freiheitsgraden in Laserscans von mobilen Robotern
(U. Osnabrück, 09/2009)
- D. Borrmann, J. Elseberg:
Deforming Scans for Improving the Map Quality Using Plane Extraction and Thin Plate Splines
(U. Osnabrück, 08/2009)
- J. Poppenborg: Online-Scheduling of a Fleet of Transportation Robots (U. Osnabrück, 3/2009)
- V. Braun: Auswahl geeigneter Sortieralgorithmen für die Verwendung mit Lego-Mindstorms-Robotern
(U. Osnabrück, 3/2009)
- L. Kunze: Putting Commonsense Knowledge into Environment Models of Household Robots
(U. Osnabrück, 9/2008)
- Th. Wiemann: Automatische Rekonstruktion planarer 3D-Umgebungen (U. Osnabrück, 8/2007)
- N. Rosemann: Formvergleich auf 2D-Laserscandaten als Trackingverfahren (U. Osnabrück, 12/2006)
- Ch. Lörken: Introducing Affordances into Robot Task Execution (U. Osnabrück, 11/2006)
- N. Müller: HRI für Rettungsroboter: Offene Evaluation, Re-Design und Spezifikation
der Operatorschnittstelle eines RoboCup Rescue Roboters (U. Osnabrück, 5/2006)
- S. Stiene: Konturbasierte Objekterkennung aus Tiefenbildern eines 3D-Laserscanners (U. Osnabrück, 1/2006)
- J. Kunkemöller: Verwendung von OWL in plangestützten Web-Agenten (U. Osnabrück, 9/2005)
- J.-O. Wülfing: Modellierung eines kommunikativen
Auftragsagenten unter Berücksichtigung der Sprechakttheorie
(U. Trier, 1/2005)
- K. Lingemann: Schnelles Pose-Tracking auf Laserscan-Daten für autonome mobile Roboter (U. Bonn, 1/2004)
(online, Shaker)
- E. Delipetkos: Particle Filters zur Lokalisiernug autonomer mobiler Roboter (FH Bonn-Rhein-Sieg, 1/2004)
- M. Hammel: Planbasierte Robotersteuerung mit HTNs (U. Bonn, 5/2003)
- M. Lies: Erkennen von Büroobjekten aus Laserscandaten von
einer mobilen Plattform aus (U. Bonn, 8/2002)
- A. Nüchter: Autonome Exploration und Modellierung von 3D-Umgebungen (U. Bonn, 8/2002)
- S. Frintrop: Robuste Roboterlokalisierung mit omnidirektionaler Bildsensorik (U. Bonn, 11/2001)
- E. Degen: Verteilte Reaktive Tupelräume als Basis von
Multiagenten-Anwendungen (U. Bonn, 10/2001)
- M. Hassel: Sensorfusion zur Selbstlokalisation eines autonomen
mobilen Roboters außerhalb von Gebäuden (U. Bonn,12/2000)
- A. Arghir: Planbasierte Navigation eines autonomen mobilen
Roboters in einer aktiven, strukturierten Umgebung (U. Bonn, 9/2000)
- J. Thievessen: Vergleich von POMDP-Verfahren zur Berechnung
optimaler Politik zur Agentensteuerung (U. Bonn, 6/2000)
- L. Ngbwa: Über die Ausführung propositionaler
Pläne durch autonome Roboter (U. Bonn, 1/2000)
- G. Faßbender: Modularisierung des Roboter-Kontroll-Problems
(U. Bonn, 11/1999)
- F. Ivancic: Lernen von Regelmengen
zur Fuzzy-Mustererkennung durch mehrphasige Clusteranalyse
(U. Bonn, 1/1999)
- J. Steffens: Einsatz von
Hierarchischem Q-Learning zur Steuerung von Laufmaschinen (U. Bonn, 1/1999)
- F. Schönherr: Ergänzung topologischer
Roboternavigationskarten im Falle schwacher Odometrie (U. Bonn, 5/1998)
- A. Güttner: Entwicklung eines fuzzygestützten,
wissensbasierten Systems zur Ermittlung von
Technologieparametern
für das Roboterbahnschweißen
(U. Dortmund, 9/1994)
- S. Kalenka: Methodische Anwendung
verschiedener klassischer Wissensakquisitionsverfahren am Beispiel der
Werkstofftechnik (Dortmund, 9/1994)
- H. Bewernick:
Dokumentkonfiguration am Beispiel des deutschen Ehescheidungsrechts
(U. Hamburg, 8/1991)
- S. Thiébaux: Possible Worlds
Planning -- The System PASCALE (U. Rennes, 5/1991)
Bachelor theses
- M. Eisoldt:
Automatisierte Optimierung interner Prozesse von Mähdreschern
(U. Osnabrück, 12/2019)
- S. Hinderink:
Erzeugung interaktiver 3D Umgebungsmodelle in LVR2 für Unity
(U. Osnabrück, 10/2019)
- M. Hillmann:
Implementierung von Scanmatching und Loopclosing in LVR2
(U. Osnabrück, 9/2019)
- F. Nardmann:
3D-Rekonstruktion von Dachflächen aus Airborne Laserscanning-Daten
(U. Osnabrück, 9/2019)
- P. Hoffmann:
Optimierung und Implementierung des Growing-Cell-Structures Algorithmus im LVR2
(U. Osnabrück, 8/2019)
- S. Frohn:
Autonomous Navigation Control and Dynamic Obstacle Avoidance on 3D Triangular Meshes
for Mobile Robots
(U. Osnabrück, 7/2019)
- L. Niecksch:
Evaluation des Toposens-3D-Ultraschall-Sensors
(U. Osnabrück, 6/2019)
- j. Gaal:
Development of a Linguistic Human-Machine Interface to a Kitchen Robot for the Manipulation of
Objects
(U. Osnabrück, 5/2019)
- L. Dierks:
Online Preprocessing of Hyperspectral Data Using High Level Synthesis
(U. Osnabrück, 3/2019)
- T. Stolzmann:
Ein Konzept zur Korrektur inkonsistenter Wissensbasen und die Umsetzung in Answer Set Programming
(U. Osnabrück, 12/2018)
- T. Grenzdörffer:
Vergleich von Tiefenbild-Kameras anhand des Anwendungsfalles Objekterkennung
(U. Osnabrück, 11/2018)
- J. Löchte:
SEMCUT: Erstellung von semantisch annotierten 3D-Karten für die Feldplanung
(U. Osnabrück, 11/2018)
- H. Janott: Integrating the Grid Map Library into Move Base Flex and the ROS Navigation Stack
(U. Osnabrück, 10/2018)
- P. Steinforth: Algorithmenentwicklung zur Detektion des ... (Thema vertraulich)
(U. Osnabrück, 08/2018)
- J. Schievink: Bau und Implementierung einer Steuerungseinheit für einen KURT2 Roboter mithilfe eines Raspberry Pis
(U. Osnabrück, 07/2018)
- I. Molcean, A. Sakhnenko: Development of a Declarative Drone Control System with an UI Based on Augmented Reality
(U. Osnabrück, 04/2018)
- K. Obermann: Performanzevaluation zweier Bildverarbeitungsbibliotheken in einer gemeinsamen Pipelinestruktur
(U. Osnabrück, 04/2018)
- T. Haverkamp: Using semantic maps for navigational planning
(U. Osnabrück, 04/2018)
- H. Krömker: Entwicklung einer MEAN-Applikation zur Verwaltung von 3D-Laserscans
in einer dokumentorientierten Datenbank
(U. Osnabrück, 03/2018)
- S. Zimmermann: Feature learning for similarity-based object categorizazion in RGB-D images
(U. Osnabrück, 03/2018)
- K. Meyer: Messsoftwareentwicklung und Selbstkalibrierung eines sensorgesteuerten
Industrierobotersystems (U. Osnabrück, 02/2018)
- Leonhard Brüggemann: RANSAC basierte Segmentierung von Dachflächen zur Erstellung
von 3D-Stadtmodellen auf Basis von Airborne Laserscanning Daten
(U. Osnabrück, 11/2017)
- M. Wiegand: Aufrechterhaltung einer konsistenten TSDF in KinectFusion Large Scale
(U. Osnabrück, 07/2017)
- O. Postovyi: Evaluation von ROS v.2 (U. Osnabrück, 12/2016)
- I. Mitschke: MPI-basierte Oberflächenrekonstruktion aus großvolumigen
3D-Punktwolken auf einem SGI UV2000 Hochleistungsrechner
(U. Osnabrück, 08/2016)
- A. Mock: Echtzeit Textur-Matching im KinectFusion Algorithmus
(U. Osnabrück, 01/2016)
- J. Bickmann: Überwachung, Darstellung und Vergleich von Messwerten von Solaranlagen
(U. Osnabrück, 12/2014)
- S. Höffner: Probabilistic Robot Localization in Continuous 3D Maps
(U. Osnabrück, 11/2014)
- N. Niemann: Berechnung optimaler Scanposen zur Erfassung einer zuvor unvollständigen 3D-Szene
(U. Osnabrück, 09/2014)
- J. Klauck: Toward Procedures for the Integration of Cognitive Robotics into Sociotechnical Systems
(U. Osnabrück, 09/2014)
- M. Stypa: Erkennung farbiger Bälle aus Farb- und Tiefenbildern
(U. Osnabrück, 06/2014)
- M. Mrozinski: Parallelisierte Marching-Cubes-Rekonstruktion mittels Octrees
(U. Osnabrück, 09/2013)
- D. Feldschnieders: Verteilte Normalenschätzung mit MPI
(U. Osnabrück, 07/2013)
- S. Hennig: Detection of Cylinders in 3D-Polygon-Meshes
(U. Osnabrück, 10/2012)
- M. Heimann: System zur automatischen Analyse von Tiefenkameradaten mittels 3D Lasersensoren
(U. Osnabrück, 9/2012; mit U. Freiburg)
- B. Wulff: GPU-based Real-time Video Analysis for Lecture Recordings
(U. Osnabrück, 4/2012)
- F. Tristram: Interaktive Visualisierung von Scanmatching (U. Osnabrück, 4/2012)
- H. Deeken: Realizing Perception and Manipulation of Objects for a 5D Manipulator
in ROS and OpenRAVE (U. Osnabrück, 3/2012)
- T. Gedicke: Warping for3D Laser Scans (U. Osnabrück, 1/2012)
- D. Meyer: Multimodale 6D-Lokalisierung unter Zuhilfenahme einer 3D-Kamera
(U. Osnabrück, 12/2011)
- C. Schulz:
How to Deal with Ontologies in an Anchoring Framework
(U. Osnabrück, 8/2011)
- D. Abraham:
Erkennen von zusammenhängenden Baugruppen in CAD-Daten
(U. Osnabrück, 7/2011)
- R. Kiefer:
Non-Primitive Cubic Point Cloud Reduction for Iterative Closest Point
(U. Osnabrück, 6/2011)
- L. Kiesow:
Approximative Berechnung einer 6D-Pose mit Hilfe einer inertialen Messeinheit
(U. Osnabrück, 5/2011)
- F. Otte:
Automatisiertes Auffüllen von Scanschatten in 3D-Laserscans
(U. Osnabrück, 12/2010)
- N. Cantono:
Pursuing Shastri's Vision: A Biologically-Inspired Object-Oriented Dynamic Associative Network
(U. Osnabrück, 11/2010)
- J. Zimmermann:
Automatisiertes Auffinden von Scanschatten in 3D-Laserscans
(U. Osnabrück, 10/2010)
- S. Moebus:
Determining Surface Material Properties by Evaluating Reflectance Values of the Laser Measurement System SICK LMS 100
(U. Osnabrück, 9/2010)
- N. Chen:
Applying Homogenized Textures from Real Photos to Simulated Surfaces
(U. Osnabrück, 1/2010)
- N. Möller:
Aspect Graphs in the Context of Object Recognition
(U. Osnabrück, 1/2010)
- P. Niermann:
Implementierung der Fixed-Radius-Suche in CUDA
(U. Osnabrück, 12/2009)
- J.M. Wülfing:
Localization of a Mobile Robot in 3D with 6D Poses Using a 3D Camera
(U. Osnabrück, 10/2009)
- A. Ellmer:
Probabilistic Modeling of Grasping Affordances in Robots Using Bayesian Networks
(U. Osnabrück, 9/2009)
- S. Stock:
Pfadplanung basierend auf der Umgebungsbefahrbarkeit am Beispiel zweier sich verfolgender Roboter
(U. Osnabrück, 8/2009)
- H. Gräuler:
Integration von Ontologien in eine Webanwendung für Produktanfragen
(U. Osnabrück, 5/2008)
- F. Meyer:
Surface detection in 3D range data for mobile crane manipulation
(U. Osnabrück, 3/2008)
- A. Rickling:
Effiziente 3D-Hough-transformation für die Ebenengewinnung in Punktwolken
(U. Osnabrück, 9/2007)
- A. Flügge:
Positioning of automated-guided vehicles by camera and artificial landmarks
(U. Osnabrück, 8/2007)
- L. Kunze:
Visual Features to Help Close the Loop in 6D-SLAM
(U. Osnabrück, 10/2006)
- D. Engelhardt:
Webinterface zur Steuerung eines Rettungsroboters
(U. Osnabrück, 10/2006)
- D. Borrmann, J. Elseberg:
Global konsistente 3D Kartierung am Beispiel des Botanischen Gartens in Osnabrück
(U. Osnabrück, 10/2006)
| Last changed: Jan 28, 2016 |