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Abstract
To execute complex tasks with a mobile robot in challenging environments, task planning and execution monitoring play
a decisive role. This paper presents the integration of an off-the-shelf HTN planner into a robotic system which is aimed
at enabling a service robot to learn from experiences. For plan execution, a state-machine-based approach is employed.
The system has successfully been demonstrated on a PR2 robot in a restaurant scenario.

1 Introduction

With the increasing capabilities of mobile service robots,
planning and execution are crucial for the performance of
complex tasks. However, the integration of planning and
execution is not straightforward: the resulting plans and
their execution should be robust and safe for the robot
and people in the environment, the plans should be eas-
ily understandable for the user, and the planner should cre-
ate plans for arbitrary starting configurations (if a plan ex-
ists). Furthermore, in the ongoing FP7 project RACE,we
aim at enabling the robot to learn from experiences and
increase its robustness based on that. For that purpose an
ontology-based architecture and knowledge representation
framework has been developed in RACE [1]. In our evalu-
ation scenario, a PR2 robot operates as a waiter in a restau-
rant environment. Typical tasks include serving a cup of
coffee to a guest or clearing the table after the guest has
left.
In contrast to classical planning, where we have a flat rep-
resentation of the possible actions in the planning domain,
Hierarchical Task Network (HTN) planning distinguishes
non-primitive and primitive tasks [2]. Primitive tasks are
like actions in classical planning that can directly be ex-
ecuted. Non-primitive tasks are decomposed by methods
into subtasks. The planner gets a goal task and uses its
methods to decompose it into subtasks until only primitive
tasks are left that can directly be executed.
We have chosen the HTN planning approach because of
several advantages it has in our domain: the plan gener-
ation is fast, so the user does not have to wait long until
the robot starts acting; because of their hierarchical struc-
ture, the resulting plans can easily be inspected by the user;
and it is possible to learn HTN methods based on previous
execution traces. Therefore, we have integrated the HTN
planner SHOP2 [3] into the RACE architecture.
The remainder of this paper has the following structure:

after a discussion of related work, the RACE architecture,
the integration of SHOP2, and state machine based plan
execution will be described. This is followed by sections
about modeling our restaurant environment and an evalua-
tion of the system for the tasks of serving a mug of coffee
to a guest and clearing all mugs from a table. The paper
concludes with a summary and outlook.

2 Related Work

The CRAM [4] system provides a framework for reason-
ing and high level robot control for autonomous mobile
robots in household environments. Complex robot con-
trol programs can be created and executed with it. Instead
of using a dedicated planner, the robot’s plans are already
specified as action recipes in the CRAM Plan Language
(CPL) and it needs to reason about the plans in order to
execute them. Like HTNs the plans have a hierarchical
structure. Part of CRAM is the KnowRob [5] knowledge
processing system which uses a knowledge representation
based on OWL-DL and provides tools to reason about that
knowledge. This can be used to infer which objects to use
for an action, where to find that object and positions where
to execute an action.
Awaad et al. [6] aim at using functional affordances to
make robot task planning and execution more robust. They
present this idea for the task of watering plants, which
would normally fail, if no watering can is available. They
show that functional affordances could be used to modify
the plan in a way that it uses a tea pot instead of the water-
ing can. In order to do this, they propose to use a modified
HTN planning algorithm that reuses the procedural knowl-
edge of the planning methods and finds object substitutes.
Therefore, they extend the JSHOP2 planner.
Another possible way to connect HTN planning and an
OWL ontology is described in [7]. It deals with the prob-



lem that some of the contents of planning domains are ir-
relevant for the planning process, but will increase the time
needed for plan generation. To deal with this, all necessary
information is stored in OWL-DL and a reasoner generates
the problem description for the planner by filtering only the
relevant information. This way, even in large domains the
problem description and therefore also the planning time
remains small.
The HTN planner SHOP2 has been used in very differ-
ent applications of which an overview is presented in [8].
These include evacuation planning, material selection for
manufacturing, project planning and automated composi-
tion of web services.

3 HTN planning and plan execution
in the RACE architecture

3.1 The RACE architecture
In the RACE project we have developed a robot architec-
ture that aims at enabling the robot to learn from experi-
ences and thereby improve its performance [1]. Figure 1
shows the RACE architecture. It addresses several pur-
poses: it needs to be suitable to allow planning and execu-
tion of complex tasks in dynamic environments and there-
fore allow the integration of different kinds of reasoners;
and it also needs to provide means to record experiences
of execution traces, learn from them and use this learned
knowledge in the future. In this paper we focus on the
former. The latter and the overall goals of RACE are de-
scribed in more detail in [1]. For communication of the
modules we use ROS [9] as a robot framework.
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Figure 1: The RACE control software architecture

The central piece in this architecture is the Blackboard. It
is implemented on top of an RDF triple store and can be
thought of as the A-Box of an OWL-DL ontology, where
each individual additionally has a temporal interval where
it is valid. The ontology provides a common representation
format on which nearly all modules are based. This way it
also contains all the information that is relevant for plan-
ning: the different areas in the room and their connections,

the current state of the robot including the position of the
torso, the arms and the position in the room, the position
of guests, mugs and other objects and even the tasks and
activities themselves.
The symbolic proprioception and symbolic perception
modules update the robot’s internal state by sending flu-
ents to the Blackboard. A fluent is an instance of a con-
cept represented in our OWL ontology together with a start
and finish time to indicate when the this instance is true.
The start and finish time are both divided into an earli-
est and latest time point. Fluents are used by all mod-
ules to communicate with the Blackboard. This way, the
OWL ontology serves as a common representation formal-
ism for the different modules. An example of a fluent
is given in Listing 1. Here, the fluent is represented in
YAML format in which we store fluents in order to record
experiences of execution traces. For the communication
between the modules ROS messages are used. The field
Class_Instance contains the OWL concept of that
fluent and the name of an instance of that concept. The
properties are represented in a list of triples with name of
the property, the type of the filler and the instance of the
filler. The fluent in Listing 1 represents an instance of
the concept RobotAt indicating that the robot trixi1
is currently at the ManipulationArea mae3. The value 0.0
of the finish time represents that the fluent is active. When
the robot leaves the area the fluent will be closed by pub-
lishing it again with an updated FinishTime. Symbolic
proprioception contains modules for publishing the posi-
tion of the robot’s torso, the position of the robot’s arms
and grippers and a symbolic representation of the robot in
the room, i.e., the area it currently is in.

!Fluent
Class_Instance: [RobotAt, robotAt7]
StartTime: [139.744, 139.744]
FinishTime: [0.0, 0.0]
Properties:

- [hasRobot, Robot, trixi1]
- [hasArea, Area, mae3]

Listing 1: Example of a fluent representing the robot’s cur-
rent position.

For plan generation, the user inserts the goal task as an in-
struction via a user interface into the Blackboard. This trig-
gers the HTN planner which creates a problem description
by querying all the information that is potentially needed
for planning from the Blackboard. The planner’s problem
description contains changing information like the robot’s
current state published by the proprioception modules, the
positions of objects and guest but also static knowledge
like the fragmentation of the room and the tables into
smaller areas and their connection. The planner needs to
convert the OWL ontology format into its own format, i.e.,
ground atoms in SHOP2 syntax. Furthermore, the planner
needs a domain description which is currently predefined
but should later in the project be learned by the concep-
tualizer and extracted from the OWL ontology. Based on
this information the planner creates a plan as a sequence



of ground actions and writes the plan into the Blackboard.
This triggers the plan execution manager, which has to dis-
patch the planned tasks to the robot.

3.2 HTN planning

In HTN planning [10], the planner gets as input a planning
domain, the current state of the world and a task that has
to be accomplished. The domain consists of methods and
operators. There are two different kinds of tasks: prim-
itive and compound tasks. Primitive tasks can directly be
executed with operators. The operators consist of the name
of the task to which they can be applied, a list of precon-
ditions and a list of effects. When the planner plans for
a primitive task, it checks the preconditions of the oper-
ator that is relevant for that task if the operator is appli-
cable in the current state. When applying the operator,
its effects are added (positive effects) to or deleted (neg-
ative effects) from the planner’s internal state. Compound
tasks are handled in a different way. They need to be de-
composed into smaller subtasks. This is done using meth-
ods. A method consists of the name of the compound
task to which it can be applied, a list of preconditions and
a list of tasks to which the original task will be decom-
posed. An example of a method for moving an object to
a given area is presented in Listing 2. The name of the
task is move_object. Variables begin with a question
mark. This method checks with its preconditions if the
object is on some area and binds the variables ?on and
?obj accordingly. If this is the case it decomposes the
compound task move_object into the compound tasks
get_object_w_arm and put_object.

(:method (move_object ?obj ?toArea)
((Instance On ?on)
(HasPhysicalEntity ?on ?obj)
(HasArea ?on ?fromArea)) ; precond.

((get_object_w_arm ?obj leftArm1)
(put_object ?obj ?toArea))) ; subtasks

Listing 2: Definition of a method for moving an object to
an area.

We use the well known planner SHOP2 [3]. It decom-
poses the tasks in the same order as they will be executed
later. This makes the planning process very fast. The plan-
ner works by starting with the goal task and decomposing
it into subtasks which are then likewise decomposed with
methods or, in case of primitive tasks, operators are applied
and the planner’s internal state is updated. A plan is found
when only actions are left leading to a decomposition tree
of tasks with ground actions as its leaves. The resulting
plan is then a sequence of ground actions which accom-
plishes the goal task when successfully executed. SHOP2
can also provide the grounded preconditions and effects of
used operators and the hierarchy how tasks have been de-
composed. We extract this information from SHOP2 and
record it as part of the robot’s experience to be able to use
it for learning new methods.

3.3 Plan Execution: A state machine based
approach

For plan execution, we use a state machine based approach.
Therefore, we transform the plan into a SMACH state ma-
chine. SMACH [11] is a Python library for creating and
executing hierarchical state machines. We modeled the op-
erators and SMACH states in a way that the created states
directly correspond to the planned ground actions. Fur-
thermore, they correspond to the basic robot capabilities.
This makes implementing the states straightforward: for
most states, e.g., tucking both arms, a ROS action that ac-
complishes the desired behavior on the robot can directly
be called, or only few additional queries to other modules,
e.g., to get the pose of an object, are required. The success-
ful or failed execution and the start and finish time of an
action are published to the Blackboard. This is relevant for
recording experiences. Based on these experiences, new
HTN methods or modifications of them will be learned to
improve robustness and performance of the system.
Encapsulating each action into its own SMACH state has
a number of advantages. First, it decouples the abstract
task planning from the details of the execution and creates
a clear interface between these two levels. This reduces
the complexity of the domain both for the planning do-
main modeler as well as for the learning algorithm that has
to work with this domain. Second, it leaves the decision
whether an action has failed (which is very specific to the
action) to the implementer of the action.
If an action fails, it is most often caused by a change in the
environment that has not been foreseen during plan gener-
ation. For example, a guest might have removed an object.
In this case, the execution of the current plan is marked as
failed and the overall task is again added to the Blackboard
as a goal task. This triggers replanning resulting in a plan
that is executable in the updated state of the environment
and might involve using another object.

4 Modeling the domain

The demonstration scenario in the RACE project contains
a counter and two tables. Enabling the robot to generate
plans requires modeling the planning domain. Our plan-
ning operators directly correspond to basic capabilities of
the PR2 robot. We have modeled the following eight op-
erators. All operator names in this paper begin with an
exclamation mark.

!move_arm_to_side ?arm Moves one arm to the
side.

!move_arms_to_carryposture Moves the arms in
front of the torso so that it can safely carry mugs.

!move_base ?area Drives with standard ROS navi-
gation capabilities.



!move_base_blind ?area When in front of the ta-
ble, the robot drives closer without obstacle avoid-
ance.

!move_torso ?torsoposture Moves the torso to
a low, middle or high position.

!pick_up_object ?object ?arm Grasps a given
object when it is reachable.

!place_object ?object ?arm ?placingArea
Puts an object that the robot is holding onto a speci-
fied area on the table.

!tuck_arms ?left_goal ?right_goal Tucks
or untucks the arms.

The PR2 platform itself imposes several constraints that
have to be addressed when modeling the HTN methods
and operators: The torso should be up for manipulating
objects to avoid restricting the possible arm motions too
much because of possible collisions with the table top; for
driving, on the other hand, the torso should be down to
lower the robot’s center of gravity. However, if we want
to carry objects, the torso should be at a middle position
to be able to move its arms in front of the robot without
hitting its base. The arms should be tucked or at a carry
posture while driving to prevent collision with obstacles
and an arm should be at the side before manipulation. Fur-
thermore, to manipulate objects on the counter or table, the
robot has to drive closely to it. This is not possible with
standard path planning because of its obstacle avoidance.
Therefore, two different operators are necessary for driv-
ing, i.e., move_base which calls the corresponding ac-
tion that already exists in ROS and move_base_blind
which only moves straight.
This leads to the representation of the restaurant environ-
ment given in Figure 2. Different kinds of areas have
been modeled in the OWL ontology and they are connected
via properties. We have divided the top of the tables and
counter into smaller PlacingAreas on which the robot can
manipulate objects from corresponding ManipulationAr-
eas. Adjacent to the ManipulationAreas are the PreMa-
nipulationAreas to which driving with standard navigation
capabilities is possible. Furthermore, at the tables there are
SittingAreas where the guests can sit and which are in turn
connected to a left and a right PlacingArea. The bound-
ing boxes of the areas and the connection between them
are calculated by a module for spatial reasoning. The con-
nections of areas can then directly be used by the planner,
e.g., to decide which ManipulationArea to drive to in order
to serve a coffee to a guest at a given SittingArea, without
having to call the spatial reasoner as an external module
during planning, which would increase the time needed for
plan generation.

Figure 2: Representation of the restaurant environment
with a counter and two tables.

The HTN methods have been modeled in a way to keep
them general and reusable for other tasks as well. The top
level method for the task of serving a coffee just selects
a coffee mug and a PlacingArea that is suitable to place
the coffee in front of the guest and then decomposes its
task into the compound task move_object. The corre-
sponding method is given in Listing 2. This method is also
reused by other tasks, e.g., for the task of clearing the table.
To comprehend the parts of a plan it is useful to have a
look at the tree of decompositions from tasks into sub-
tasks. This is can be very useful while modeling the
domain or for the user to understand what the robot is
doing. An example of the upper level of such a de-
composition hierarchy for the task of serving a coffee is
shown in Figure 3. The upper part of this hierarchy,
i.e., the decompositions of serve_coffee_to_guest
and move_object have already been discussed. In
the same way, the task get_object_w_arm is decom-
posed to the compound tasks of driving to the PreMa-
nipulationArea and grasping mug1 using the right arm.
put_object is defined recursively. It is decomposed
into driving to the PreManipulationArea of the table and
the task put_object, again.

  move_object 
    mug1 
    pawr1

 put_object
  mug1
  pawr1

 get_object_w_arm
    mug1
    rightArm1

  serve_coffee_to_guest
    guest1

 drive_robot
    pmae3

 grasp_object_w_arm
    mug1
    rightArm1

 drive_robot
    pmas1

 put_object
    mug1
    pawr1

Figure 3: Example of a decomposition hierarchy for serv-
ing a coffee.



For grasping an object, the robot first has to assume a pose
that is suitable for object manipulation before it can pick
the object up and leave the manipulation pose again. An
example of the whole decomposition hierarchy for grasp-
ing a mug is presented in Figure 4. Primitive tasks are
marked green. The robot first has to move its torso up and
untuck the right arm in order to be able to move the arm to
the side afterwards. In this posture it drives more closely
to the table. Now, it can pick up the mug and drive back
again.

  grasp_object 
    mug1 
    rightArm1

 leave_manipulation_pose
   mae3

 assume_manipulation_pose
    mae3
    rightArm1

 !pick_up_object
    mug1
    rightArm1

 assume_manipulation_pose
    mae3
    rightArm1

 assume_manipulation_pose
    mae3
    rightArm1

 move_arm_to_side
    rightArm1

 !move_torso
    torsoUpPosture

 !tuck_arms
    armTuckedPosture
    armUntuckedPosture

 !move_arm_to_side
    rightArm1

 !move_base_blind
    mae3

 !move_base_blind
    pmae3

Figure 4: Example of a decomposition hierarchy for
grasping a mug.

To be able to clear the table, only few additional meth-
ods had to added to the planning domain because they
can reuse many of the methods and operators that have al-
ready been modeled for serving a coffee. Besides a method
for the goal task clear_table, methods for the tasks
get_objects and put_objects had to be added in
order to enable the robot to carry objects with both arms at
the same time if there are multiple mugs on the table.

5 Experiments

The planning and execution system has successfully been
tested in simulation and on a real PR2 robot for the tasks of
serving a coffee to a guest and clearing the table. For serv-
ing a coffee, three different starting configurations have
been tested. First, the starting situation was the one dis-
played in Figure 2 with mug1 on the left PlacingArea of
counter1 and the guest sitting at the west side of the left
table. The plan given in Listing 3 of ground actions has
been created. The plan was successfully transformed to a
state machine and executed. An image of the PR2 serving
the mug in front of the guest can be seen in Figure 5. The
robot was also able to generate a plan and successfully ex-
ecute it in different starting configurations when the guest
was sitting at the opposite side of the left table or the south-
ern side of the right table.

Figure 5: PR2 serving a coffee.

!move_torso torsoDownPosture
!tuck_arms armTuckedPosture

armTuckedPosture
!move_base pmae3
!move_torso torsoUpPosture
!tuck_arms armTuckedPosture

armUntuckedPosture
!move_arm_to_side rightArm1
!move_base_blind mae3
!pick_up_object mug1 rightArm1
!move_base_blind pmae3
!move_torso torsoMiddlePosture
!move_arms_to_carryposture
!move_base pmas1
!move_torso torsoUpPosture
!move_arm_to_side rightArm1
!move_base_blind mas1
!place_object mug1 rightArm1 pawr1
!move_base_blind pmas1

Listing 3: Plan for serving a coffee.

The second demonstration scenario was about clearing all
mugs from a table. Two mugs were placed on different ar-
eas on the left table and the robot had to bring them to the
counter. The plan contained 27 operators. Pictures from
the successful execution of this task are shown in Figure 6.
Because of the additional methods that guide the search
in HTN planning, the time needed for plan generation is
very low compared to the time the robot needs to execute
its plans. For both tasks in the different starting configura-
tions, planning itself takes less than one second.

Figure 6: PR2 clearing a table. On the left side, the robot
grasps a mug from the table and on the right side, it places
two mugs on the counter.



Before that, additional time is needed to generate the prob-
lem description based on the robots current state. There-
fore, several queries have to be sent to the Blackboard
whose time duration depends on the overall load of the
system. The complete duration for generating a plan has
always been less than ten seconds. Thus, planning has no
big influence on the execution time of our demonstration
scenarios.

6 Conclusions and Outlook

In this paper we presented the integration of an off-the-
shelf HTN planner together with a state-machine based ap-
proach for plan execution into an architecture that is aimed
at learning from experiences. The approach was demon-
strated on a PR2 robot in a mobile manipulation domain.
Benefits of HTN planning are the low runtime for plan gen-
eration, because of the hierarchical structure the plans are
easily inspectable by the user, and it allows to learn or
modify further methods to achieve increased robustness.
The use of an OWL ontology as a common representation
format makes the planning domain and the robot’s capa-
bilities transparent to the different modules. It is the basis
for the Blackboard which stores the robot’s internal knowl-
edge about occurrences in the environment. In future work,
we will integrate spatial and temporal reasoning into the
planning process and connect the planner and the plan ex-
ecutor more closely to easily switch between the two and
allow plan repair.
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