Introduction and Research Background

Joachim Hertzberg

Osnabrück University and DFKI Robotics Innovation Center

Overview

- 1. Osnabrück, its University, and DFKI
- 2. Research in Plan-Based Robot Control ****** Lunch Break *****
- 3. Application-Oriented Research: Agricultural Robotics
- 4. Plan of (my part of) the SAI seminar

1. Osnabrück, its University, and DFKI

- 2. Research in Plan-Based Robot Control ****** Lunch Break *****
- 3. Application-Oriented Research: Agricultural Robotics
- 4. Plan of (my part of) the SAI seminar

Osnabrück

- Population: 160,000 (larger area ≈ 500,000)
- Founded: ≈ 800
- Economy (area):
 - Trade
 - Logistics
 - Food Industry
 - Healthcare
 - Metal Processing
 - Cars (VW)
 - Agricultural Machines

Osnabrück University

Size

- ≤ 12,000 students
- 1680 staff (≥ 200 profs)
- ≈ 118 Mio € budget (2013)
- no medicine, no engineering

UOS Profile

- operational since 1974
- original profile: humanities & teacher education
- recent profile (some elements):
 - interdisciplinary institutes (Cognitive Science, Environmental Syst. Rsch., International Studies, ...)
 - teacher education
- Research foci
 - 1 rsch. cluster (DFG), Biology
 - 4 grad. coll. (e.g., Cog. Sci.)

Institute of Computer Science

DFKI in Osnabrück

- Osnabrück Branch (of DFKI Robotics Innovation Center) founded in 2011
- Research topic: Plan-based robot control
- Chief application domain: Agricultural robotics
- More about that after lunch!

My Long-Term Research Agenda

How does long-term purposeful behavior work?

OSNABRÜCK

UNIVERSITÄT

1. Osnabrück, its University, and DFKI

2. Research in Plan-Based Robot Control

***** Lunch Break *****
3. Application-Oriented Agricultural Robotic

2.1 Issues & Challenges
2.2 Interpreting 3D Point Clouds
2.3 Plan-Based Control

4. Plan of (my part of) the SAI seminar

2.1 Issues & Challenges

2.2 Interpreting 3D Point Clouds

2.3 Plan-Based Control

Really Closing the Loop

Examples

- "If you see a sink and a tiled floor, then this is no conference room!"
- "If you are in the kitchen, you should see an oven!"

Plan Execution Monitoring

Issue

- Plan execution monitoring: Tell *success* case from *nominal* case from *failure* case from *retry* case from ...
- ...see next slide

2.1 Issues & Challenges

2.2 Interpreting 3D Point Clouds

2.3 Plan-Based Control

Sensor Data Interpretation

Example: How many chairs?

[AG Bülthoff, MPI Biol. Kybernetik]

Sensor data interpretation includes top-down reasoning!

2.1 Issues & Challenges

2.2 Interpreting 3D Point Clouds

2.3 Plan-Based Control

... and overall:

- Handle temporal, changing, partially obsolete and/or wrong KBs/Belief Bases
- Handle huge KBs, of which only a small part is relevant for given planning/perception problem
 - Tell (potentially) relevant from (apparently) irrelevant KB parts
- Solve "object anchoring" problem (not to mention symbol grounding)

2.1 Issues & Challenges2.2 Interpreting 3D Point Clouds2.3 Plan-Based Control

The Problem

- Given: 3D sensor environment point cloud model
 - ... as by 3D laser scanner, ToF camera, Kinect, typically registered from several scans (automatic)

- Given: CAD model of some object/type ... as by provider, Google 3D Warehouse, ...
- Given: model of geometric constituents of object
 ... as handcrafted (now) or gained from CAD model (future)
- Find: object occurrences in data

Why Care?

- Semantic mapping (mapping with objects + ontology)
- Data reduction (point sub-clouds → geometric primitives)
- Fill up occlusions (perceive true 3D in "2.5D" sensor data)
- Applications! (map sensed reality to nominal CAD)
 - Robotic mapping
 - Facility management
 - → Plant engineering

(Own) References

- M. Günther, T. Wiemann, S. Albrecht, J. Hertzberg. Building Semantic Object Maps from Sparse and Noisy 3D Data. Proc. IROS-2013
- T. Wiemann, K. Lingemann, J.Hertzberg. Automatic Map Creation for Environment Modelling in Robotic Simulators. Proc. 27th Eur. Conf. Modelling and Simulation (ECMS-2013)
- T. Wiemann, K. Lingemann, A. Nüchter, J. Hertzberg. A Toolkit for Automatic Generation of Polygonal Maps – Las Vegas Reconstruction. Proc. 7th German Conf. on Robotics (ROBOTIK-2012)
- M. Günther, T. Wiemann, S. Albrecht, J. Hertzberg. Model-based object recognition from 3D laser data. Proc. 34th Annual German Conference on AI (KI-2011)
- LVR: http://www.las-vegas.uni-osnabrueck.de/
- 3DTK: http://slam6d.sourceforge.net/

Architecture Context

Step I: Detect Geometric Primitives

- Detect primitives (plane, cylinder, sphere) from point normals in dense sub-clouds
- Furniture: restrict to **planar patches** (orientation-independent!)
- Generate triangle mesh by optimized marching cubes implementation
- Region growing along homogeneous triangle normals

Marching Cubes ...

... is a std. algorithm from CG for turning voxel-oriented representation into polygonal representation

2.1 Issues & Challenges2.2 Interpreting 3D Point Clouds2.3 Plan-Based Control

Step II: Generate Object Hypotheses

Check relations based on sensor data (size, spatial relations), combine SWRL rules with ontology

 $Table(?p) \leftarrow HorizontalPlane(?p) \land hasSize(?p,?s) \land$

swrlb: greaterThan(?s,1.0) \land hasPosY(?p,?h) \land

 $swrlb: greaterThan(?h, 0.65) \land swrlb: lessThan(?h, 0.85)$

Calculate object pose hypothesis (surface normals, PCA, ...)

Step III: Verify Object Hypotheses

Basic Idea

- Sample CAD model into 3D point cloud
- Register model sampling
 with sensed 3D point cloud at hypothetical pose, using ICP
- Accept object hypothesis if matching error below threshold

Modification (ignore errors from scanning/sampling difference)

 Determine model/data correspondence according to filled/ empty voxel bins

Example: 3D Point Cloud Data

Plan-Based Control

2.3

UNIVERSITÄT OSNABRÜCK

Example: Primitives & Hypotheses

- Plane patches from triangle mesh (neighboring triangles with like normals)
- Non-planar surfaces in green
- Table(top) hypotheses in grey

UNIVERSITÄT

Example: Verification

Verify table object and pose by ICP matching of point sampling at hypothetical pose

Corresponding CAD table top before and after ICP matching

Example: Results

Plan-Based Control

2.3

Animation

Issues in Sensor Data Interpretation

- Abduce potential aggregates from detected objects plus DL domain model
- Reinterpret objects
- Substitute sensor data (occlusions) by reasoning
- Generate **expectations**

[Neumann & Möller, 2006]

2.1 Issues & Challenges2.2 Interpreting 3D Point Clouds2.3 Plan-Based Control

Robot Planning

The plan is that part of the robot's program, whose future execution the robot reasons about explicitly. [D. McDermott, 1992]

- Dates back to STRIPS/SHAKEY tradition in AI (1960/70s)
- Various benefits for robot ctrl: Performance optimization (time, robustness), HRI/RRI, software engineering
- Plan just <u>one</u> source of information for robot ctrl (<u>hybrid</u> arch.s)
- Plan format may vary; notion of planning may differ from classical view ("adapting library plan stubs")
- Robot plans are short. Autonomous execution matters!
- Needs hybridization with space, time & resource reasoning
- Needs object anchoring & action grounding!
- Needs to cope with irrelevant, outdated & wrong facts!

Running Example: RACE

- <u>Robustness by Autonomous Competence Enhancement</u>
- Univ.s Aveiro, Hamburg (coord.), Leeds, Örebro, Osnabrück
- EU 7th FP, 12/2012–11/2014
- **Research Topic**: Learning from (own) robot experiences
- Osnabrück part: Plan-based robot control
- http://project-race.eu/

How to Serve a Coffee

2.1 Issues & Challenges2.2 Interpreting 3D Point Clouds2.3 Plan-Based Control

Control Flow

2.1 Issues & Challenges2.2 Interpreting 3D Point Clouds

2.3 Plan-Based Control

HTN Planning

- ROS node for (J)SHOP2
- World state is extracted from the Blackboard

2.1 Issues & Challenges2.2 Interpreting 3D Point Clouds2.3 Plan-Based Control

HTN (STN) Task serve_coffee_to_guest

2.1 Issues & Challenges2.2 Interpreting 3D Point Clouds

2.3 Plan-Based Control

HTN (STN) Subtask grasp_object

2.1 Issues & Challenges2.2 Interpreting 3D Point Clouds2.3 Plan-Based Control

Plan Execution with SMACH

- Plan is transferred to a SMACH state machine and executed
- 1 to 1 to 1 mapping from operators to states to robot capabilities (atomic actions)

 Failed plan can be reinserted into the Blackboard, which invokes re-planning (or "failing upward" in plan hierarchy)

2.1 2.2

2.3

Issues & Challenges

Plan-Based Control

Interpreting 3D Point Clouds

38

"Consistency-Based" Execution Monitoring

- In RACE, Execution Monitoring can leverage rich knowledge
 - spatial (e.g., correct placement of objects w.r.t. each other)
 - temporal (e.g., coffee gets cold after 5 minutes)
 - causal (e.g., gripper is not closed while holding cup)
 - ontological (e.g., functional zones)
 - resource (e.g., do not exceed max weight of tray)
- How to assess consistency of observed behavior w.r.t. rich knowledge?

Issues & Ch Interpreting

Plan-Based

- Towards consistency-based execution monitoring
 - infer courses of actions and changes in the environment based on inconsistencies in different types of knowledge

UNIVERSITÄT

The need for Hybrid Planning

- Space, time, and "causation" (action dependencies) interact in plan-based robot control
 - Clutter on the table influences the best serving position, which influences the best grasp and the arm trajectory and the arm to use – left, right, which influences the arm to pick up an object with on the way, which influences that part of the path and the time, which influences ...
- Separating different planning realms leads to suboptimal and inflexible plans
- Integrating them creates complexity; luckily, robot plans are short
- Current path in RACE: build a hierarchical planner in terms of the Meta-CSP framework (F. Pecora, Örebro)

- 1. Osnabrück, its University, and DFKI
- 2. Research in Plan-Based Robot Control ****** Lunch Break *****
- 3. Application-Oriented Research: Agricultural Robotics
- 4. Plan of (my part of) the SAI seminar

- 1. Osnabrück, its University, and DFKI
- 2. Research in Plan-Based Robot Control ****** Lunch Break *****
- 3. Application-Oriented Research: Agricultural Robotics
- 4. Plan of (my part of) the SAl seminar

3.1 What is DFKI?3.2 Robots Gone Farming

3.1 What is DFKI?3.2 Robots Gone Farming

DFKI

The German Research Center for Artificial Intelligence (German: *Deutsches Forschungszentrum für Künstliche Intelligenz, DFKI*) is one of the world's largest **nonprofit contract research institutes** in the field of innovative software technology **based on AI methods**.

The Pentagon of Innovation

DFKI Figures

- 414 staff scientists (384 full time equiv.)
- 39,5 Mio. € turnover in 2012
- Turnover per scientist > 100 T€
- average age: 36 (comparison: Fraunhofer Society: 43)
- Additional 285 sc. assistants (171/full t. equiv.), additional freelancers
- 699 staff
- 171 running projects

Research Units and Groups

DFKI Osnabrück Branch

3.1 What is DFKI?

3.2 Robots Gone Farming

Example Projects: SmartBot, marion

Sugar Beet Harvester MAXTRON, Grimme

Combine Harvester LEXION, **Tractor XERION, CLAAS**

Robotic Solutions for Agriculture, Ship Building, and SME Production Funding: EU Interreg

Partners (some): Amazone, DFKI, Grimme, HS OS

Mobile, autonomous, co-operative robots in complex value creation chains Funding: Fed. Min. Economy (BMWI) Partner: CLAAS, DFKI, STILL, ATOS (ended 12/2013)

OSNABRÜCK UNIVERSITÄT

Corn Harvesting Scenario

Route Planning

Motion Planning, Structure

Determine Machine Parameters

3.1 What is DFKI?3.2 Robots Gone Farming

Motion Primitives

3.1 What is DFKI?

3.2 Robots Gone Farming

Motion Planning

UNIVERSITÄT U OSNABRÜCK

The Big Story

- Machine Throughput keeps increasing
- Logistics becomes a limiting factor
- Planning needed for complete process chain
- "marion" was about developing a prototype for a dynamical planning system for corn harvesting
- Process agents get coordinated better
- Unlock hidden productivity potential

OSNABRÜCH

UNIVERSITÄT

 "marion" results are now being developed towards products as financed by CLAAS

What is DFKI?

Robots Gone Farming

- 1. Osnabrück, its University, and DFKI
- 2. Research in Plan-Based Robot Control ****** Lunch Break *****
- 3. Application-Oriented Research: Agricultural Robotics
- 4. Plan of (my part of) the SAI seminar

Seminar Sessions

All sessions:

- (1) Presentation by myself; lunch break;
- (2) discuss paper from literature (which all(!) have read)
- For (2): 2 students lead through the paper discussion
- All papers online on the Seminar Web page (plus http://www.inf.uos.de/hertzberg/sai14-jh.html)
- March 14th: Semantic Mapping
- March 21st: Object Anchoring and Symbol Grounding
- April 4th: Approaches to Plan-Based Robot Control
- April 14th(!!): "Service Robotics"

Exams

- Three options for passing:
 - Lead the discussion in a session (pair of 2 students)
 - Oral discussion (30') about the seminar topics with me (pair of 2)
 - Hand in an essay (ca. 10 pages) summarizing one of the seminar papers (1 student)
 - Deadlines:
 - Oral discussions: By May 25th
 - Essays: Hand in by May 16th
 - After that: Grading is "fail"
- Volunteers for next Friday's paper?

N. Blodow & al.: Autonomous Semantic Mapping for Robots Performing Everyday Manipulation Tasks in Kitchen Environments. Proc IROS-2011

Thanks ...

- ... to the the KBS group staff
 - Sven Albrecht
 - Martin Günther
 - Thomas Schüler
 - Jochen Sprickerhof
 - Sebastian Stock
 - Thomas Wiemann
 - ... and students
- ... to the DFKI OS staff
 - Kai Lingemann
 - Stefan Scheuren
 - Stephan Stiene
 - Astrid Ullrich
 - ... and students

... for your time!