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Abstract

In this paper, we show how standard GIS operations like the
complement, union, intersection, and buffering of maps can
be made more flexible by using fuzzy set theory. In particular,
we present a variety of algorithms for operations on fuzzy
maps, focusing on buffer operations for fuzzy maps.

Introduction
Although geographic information systems have been used
for quite a while (Coppock & Rhind 1991), their function-
ality has changed only little over the years. In spite of
their name, geographic information systems have so far been
mostly geometric in nature, ignoring the temporal, thematic,
and qualitative dimensions of geographic features (Molenaar
1996; Sinton 1978; Usery 1996). There are numerous at-
tempts to overcome these limitations. For example, a variety
of papers (Frank 1992; Goodchild 1992; Gupta, Weymouth,
& Jain 1991; Herring 1991; 1992; Raper & Maguire 1992)
deal with extensions of the data model, while Allen’s work
and its derivatives (Allen 1983; Freksa 1990; Guesgen 1989;
Hernández 1991; Mukerjee & Joe 1990) form the basis for
numerous temporal and qualitative endeavors to extend geo-
graphic information systems (Egenhofer & Golledge 1997;
Frank 1994; 1996; Peuquet 1994). Applications of fuzzy
techniques are most commonly found in remote sensing lit-
erature but (Altmann 1994; Brimicombe 1997; Molenaar
1996; Plewe 1997) provide examples that the inherent fuzzi-
ness of geographic features becomes increasingly acknowl-
edged in geographic information science as well.

In many geographic information systems, the extraction
of new information from stored spatial data is achieved
through map overlap. New maps are computed from exist-
ing ones by applying one of the following operations:
� Buffer operations, which increases the size of an object

by extending its boundary.

� Set operations, such as complement, union, and intersec-
tion.

These operations are exact quantitative operations. Humans,
on the other hand, often prefer a vague, uncertain, or qual-
itative operation over an exact quantitative one. For ex-
ample, instead of requesting all locations on a map that
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are at most 2810m away from the sea, it would be more
adequate from the cognitive viewpoint to request all loca-
tion that are close to the sea (Clementini, Di Felice, &
Hernández 1997). This, however, requires some kind of
vague, uncertain, or qualitative buffer operation. We have
introduced such an operation, together with other similar
operations, in previous papers (Guesgen & Albrecht 1998;
Guesgen & Histed 1996) by using fuzzy set theory, but have
not discussed efficient algorithms for the fuzzy operations.

Fuzzifying Maps
In the following, we restrict ourselves to raster-based maps.
Such a map consists of a grid of cells whose values specify
certain attributes of the locations represented by the map. In
the simplest case, the cell values are restricted to 0 and 1,
where 0 signals the absence and 1 the presence of a certain
attribute, like the attribute of a location being part of a road,
waterway, residential area, commercial area, rural area, etc.

In some cases, there is a crisp boundary between locations
that have a certain attribute and those that don’t have that
attribute, but often this is not the case. For example, it is not
always clear where a rural area stops and a residential areas
start, or where a forest is not a forest any more. To cater
for this fact, we extend the range of cell values from the set
f0; 1g to the interval [0; 1], and thereby convert a regular
raster map into a fuzzy raster map. Given a cell x in the
fuzzy raster map, �(x) 2 [0; 1] indicates the degree to which
x has the attribute represented by the map. The function
�(x) is called the membership function of the fuzzy raster
map.

Performing a set operation (complement, union, and inter-
section) on fuzzy raster maps is straightforward. There are
several ways of defining the complement, union, and inter-
section of membership functions (Driankov, Hellendoorn, &
Reinfrank 1996), but they all have in common that they are
defined cell-wise for all cells L in the fuzzy raster map L.
In the case of the original max/min scheme (Zadeh 1965),
the membership functions for the complement, union, and
intersection are defined as follows, where �1 and �2 denote
the membership functions of the underlying maps and �3 the
one of the resulting map:

Complement: 8x 2 L : �3(x) = 1� �1(x)
Union: 8x 2 L : �3(x) = maxf�1(x); �2(x)g
Intersection: 8x 2 L : �3(x) = minf�1(x); �2(x)g



Since the membership functions for the complement,
union, and intersection are defined cell-wise, an algorithm
for performing a set operation on fuzzy raster maps can just
iterate through the set of cells and compute a new value for
each cell based on the given value(s) for that cell, which
means the algorithm is linear in the number of cells, i.e, its
complexity is O(jLj).

Buffer Operations
Unlike the set operations, buffer operations cannot be de-
fined cell-wise. They usually involve a number of cells that
are in the same neighborhood. If any of these has a value of
1, then the value of x is changed to 1; otherwise it remains
unchanged. In other words, we compute the maximum of
the value of x and the values of all cells in the neighborhood
of x. A fuzzy raster map can be buffered in a similar way,
resulting in values from the interval [0; 1] rather than the set
f0; 1g.

Although buffering a fuzzy raster map as indicated above
might be of use for many applications, we do not want to
restrict ourselves to crisp buffer operations for fuzzy raster
maps. Rather, we want the buffer operation to depend on
the proximity of the cells under consideration. For exam-
ple, if there is an area on the map with very high mem-
bership grades, then the buffer operation should assign high
membership grades to cells that are very close to that area,
medium high membership grades to cells close to the areas,
and low membership grades to cells further away.

One way to achieve this behavior is to determine the direct
neighbors of a cell and to apply a buffer function to deter-
mine the new membership grade of these neighbors. There
are two types of direct neighbors:

� Edge-adjacent (4-adjacent) neighbors, or edge neighbors
for short. Two cells of the grid are edge neighbors, if and
only if they have an edge in common.

� Vertex-adjacent (8-adjacent) neighbors, or vertex neigh-
bors for short. Two cells of the grid are vertex neighbors,
if and only if they have a vertex in common.

A buffer function is a monotonically increasing function � :
[0; 1]! [0; 1] that satisfies the following condition:

8m 2 [0; 1] : �(m) � m

If x0 is a neighbor of x1, then the new membership grade
of x1 is determined by the maximum of the old membership
grade of x1 and the value of the buffer function applied to
the membership grade of x0:

�(x1) maxf�(x1); �(�(x0))g

Since updating the membership grade of x1 can have an im-
pact on the membership grades of the neighbors of x1, the
update process has to be repeated for all cells of the map
over and over again until a stable situation is obtained.

Figure 1 shows an illustration of a partially buffered map.
We assume that in this example the original map had only
membership grades of 0 (unfilled white areas) and 1 (striped
dark grey areas). The buffer operation uses the vertex neigh-
bor relation to increase the membership grades of an unfilled
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Figure 1: A partially buffered map illustrated by using a grey
scale to indicate different membership grades. The upper
right part of each cell indicates the value derived from the
striped dark grey cells on the right, whereas the lower left
part of the cell indicates the value derived from the solitary
dark grey cell. The overall value of the cell is the maximum
of the two values.

cell to a value of 1

2
(striped light grey areas) if there is at least

one neighbor with a value of 1, or to a value of 1

4
(striped

white areas) if there is at least one neighbor with a value of
1

2
but no neighbors with a value of 1.

Algorithms for Buffering
A brute-force algorithm for buffering a fuzzy raster map is
shown in Figure 2. The algorithm visits each cell of the map
and updates its membership grade based on the member-
ship grades of the neighboring cells. If any of the member-
ship grades is changed, the algorithm repeats the updating
process until all membership grades become stable. More
precisely, the algorithm applies the buffer function � to the
membership grade �(x0) of a cell x0 and uses the result to
update the membership grades of the edge neighbors of x0
(k = 4) or the vertex neighbors of x0 (k = 8), respectively.



Brute-Force Buffering

Let � be the membership function of the map.

Let � be a buffer function.

Let L be the set of all cells in the map to be buffered.

Repeat until � is stable:

For each x0 2 L do:
For all neighbors xi of x0 do:
�(xi) maxf�(xi); �(�(x0))g

Figure 2: A brute-force algorithm for buffering raster fuzzy
maps.

Buffering by Local Propagation

Let �, �, and L be defined as before (Figure 2).

While L 6= ; do:

Select x0 2 L.
L L� fx0g

For all neighbors xi of x0 do:
�(xi) maxf�(xi); �(�(x0))g

If �(xi) has changed, then L L [ fxig

Figure 3: A local propagation algorithm for buffering fuzzy
raster maps.

Note that membership grades of the original map are lower
bounds for the membership grades of the new map.

Since the algorithm revisits each cell when repeating the
updating process, even the ones whose neighbors have not
been changed in the previous iteration, it performs many un-
necessary checks. An improved approach is to keep track of
the changed cells and to revisit a cell only if at least one of
its neighbors has been changed. The algorithm in Figure 3
achieves this by applying the principle of local propagation:
the membership grade of a cell is propagated to the neigh-
bors of the cell, which are then put on to the list of cells to
be visited in the future.

The local propagation algorithm is guaranteed to termi-
nate. To see this, note that maps have finite sets of cells L,
and hence a finite number of membership grades. The transi-
tive closure of the neighborhood relation is also finite, which
means that the buffer operation is applied a finite number of
times to a finite number of values. Therefore, the number of
new membership grades is limited and with that the number
of possible changes. Since cells are only put back into the set
L if the membership grade has changed, L must eventually
become empty.

Although the propagation algorithm is guaranteed to ter-
minate, it may take large number of cells to be revisisted be-
fore L before finally becomes empty, the reason being that
it is always possible for a cell to receive a larger member-
ship grade because of the buffer operation. To prevent this

Buffering with Ordered Cells

Let �, �, and L be defined as before (Figure 2).

While L 6= ; do:

Select x0 2 L such that �(x0) is maximal in L.
L L� fx0g

For all neighbors xi of x0 do:
�(xi) maxf�(xi); �(�(x0))g

Figure 4: An algorithm for buffering fuzzy maps using or-
dered cells.

from happening, we can select a cell from L with a maxi-
mum membership grade. The grade for such a cell cannot
be increased by any buffer operation �(x), since �(x) � x

for all x 2 [0; 1], and therefore buffering the neighbors of
a cell with maximum membership grade results in assign-
ing a final membership grade to the neighbors of that cell.
This means that none of the cell have to be revisited. The
improved algorithm is shown in Figure 4.

From Iterative Buffering to Global Buffering
Although propagating the result of a buffer function � lo-
cally through a fuzzy raster map is a reasonable way to
buffer such a map, it does not cater for global effects, as
the membership grade of a cell is determined by its original
membership grade and the grade of its immediate neighbors,
but not by the membership grade of cells further away from
the cell under consideration. To achieve a more global ef-
fect, we replace � with a global buffer (or proximity) func-
tion  that is applied not only to the membership grades of
the neighbors of a given cell x0 but potentially to any cell
x in the map. The function  has two arguments, one of
which is �(x0), the membership grade of x0, and the other
is �(x; x0), the distance between x and x0, which can be
defined as follows:

1. �(x0; x0) = 0

2. 8x 6= x0 :
�(x; x0) = minf�(x0

; x0) j x
0 neighbor of x)g+ 1

We require  to be monotonically increasing in the first
argument, i.e., the larger the membership grade of x0, the
larger the value of  , and monotonically decreasing in the
second argument, i.e., the further away x is from x0, the
smaller the value of  . We further require that the value of
 never exceeds the value of the first argument:

8m 2 [0; 1] and 8d 2 [0;1) :  (m; d) � m (1)

The update of a membership grade is computed in a similar
way as before:

�(x) maxf�(x);  (�(x0); �(x; x0))g

In addition to that, we have to ensure that the resulting
membership grades are plausible from the intuitive point of
view. In particular, we want to avoid that a local effect over-
rides a more global one if they originate in the same cell. For



Global Brute-Force Buffering

Let � be the membership function of the map.

Let  be a global buffer function.

Let L be the set of all cells in the map to be buffered.

For each x0 2 L do:

For all x 2 L� fx0g do:
�(x) maxf�(x);  (�(x0); �(x; x0))g

Figure 5: A brute-force algorithm for buffering fuzzy raster
maps using a global buffer function.

example, if a cell x0 has a distance of 1 to a cell x1 and a
distance of 2 to a cell x2, then  ( (�(x2); 1); 1) should not
exceed  (�(x2); 2), i.e., the new membership grade of x0
is influenced by the membership grade of x2 directly rather
than the propagation of that membership from x2 through
x1 to x0. We can enforce this property by requiring the fol-
lowing:

8m 2 [0; 1] and 8d0; d1; d2 2 [0;1) :
d2 = d1 + d0 =)  (m; d2) �  ( (m; d1); d0)

(2)

The function  (m; d) = m

1+d
, for example, satisfies this cri-

terion, whereas  (m; d) = m

1+d2
does not.

If we require equality instead of inequality in Formula (2),
we achieve the same effect as with the function � as in-
troduced in one of the previous sections. If  (m; d2) =
 ( (m; d1); d0), then the new membership grade of a cell x
with distance d from cell x0 can be computed by applying 
successively to the membership grade of x0, i.e., by defining
�(m) �  (m; 1):

�(x) maxf�(x);  ( (: : :  
| {z }

d

(�(x0); 1) : : :))g

A brute-force algorithm for buffering a fuzzy map using a
global buffer function rather than a local one can be obtained
by extending the update operations in the algorithm of Fig-
ure 2 to all cells in the map. The resulting algorithm is shown
in Figure 5. The algorithm repeatedly iterates through the set
of cells, using the membership grades of a cell to update the
membership grades of the other cells. This is done regard-
less of whether the membership grade of a cell can possibly
have an effect on other cells or not. An improvement can
be achieved by using only those cells that have the potential
to influence other cells. This is the case if the current mem-
bership grade of the cell is not minimal and was not derived
from the membership grade of another cell through buffer-
ing. Cells with minimal membership grade cannot increase
the membership grade of another cell during buffering, be-
cause the buffer operation always returns a value smaller
than or equal to the membership grade of the cell that is
used as argument of the buffer operation (cf. Formula (1)).
A cell whose membership grade was derived from the mem-
bership grade of another cell through buffering cannot make
any contribution because the other cell has spread its influ-
ence to all cells of the map already, and since global effects

Global Buffering with Ordered Cells and Cutoffs

Let �,  , and L be defined as before (Figure 5).

L
0
 L� fx j �(x) is minimal in Lg

While L0
6= ; do:

Select x0 2 L0 such that �(x0) is maximal in L0.
L

0
 L

0
� fx0g

For all x 2 L� fx0g do:
�(x) maxf�(x);  (�(x0); �(x; x0))g

If �(x) has changed, then L0
 L

0
� fxg

Figure 6: An algorithm for buffering fuzzy raster maps using
a global buffer function, ordered cells, and cutoffs.

dominate local ones (cf. Formula (2)), the current member-
ship grade of the cell under consideration does not have any
additional effect.

Figure 6 shows an improved algorithm, which restricts the
outer loop to the set of cells that might have an influence on
other cells. Initially, this set contains all cells of the map.
However, when a cell is detected whose membership grade
is updated through a buffer operation, the cell that was up-
dated is removed from the set of influential cells, because
it won’t have any effect on the membership grades of other
cells in a future iteration. In addition to that, the cells to be
buffered are selected according to their membership grades.
Cells with large membership grades are more likely to cause
a cutoff than those with smaller grades. It therefore makes
sense to consider cells with large membership grades first.

Conclusion
In the first part of the paper, we introduced algorithms for
buffering fuzzy raster maps with a local buffer function. A
fuzzy raster map is a collection of cells whose values range
between 0 and 1, specifying to which degree a particular at-
tribute holds for the location represented by the cell. We
showed that a brute-force buffering algorithm can be im-
proved by using local propagation, which can be further im-
proved by ordering the cells according to their membership
grades.

The second part of the paper dealt with global buffering.
The local buffer function �(m) was replaced with a global
buffer function  (m; d), which gives us greater flexibility in
updating membership grades. We introduced a brute-force
algorithm for global buffering and showed several improve-
ments of this algorithm, using similar techniques as in the
first part of the paper.

The idea of using fuzzy set theory to handle imprecision
in spatial reasoning is not new (Altmann 1994), and so it
might look like a step backwards to consider buffer func-
tions in a more rigid way than it is usually done. However,
by focusing on first local and then global buffer functions, in
particular their properties and capabilities, we are able to go
beyond algorithms that perform brute-force buffering. This
is of special interest if one is concerned about the computa-



tional complexity of buffering fuzzy maps.
There are a number of issues that we have not addressed

in this paper. For example, we did not discuss how to choose
a buffer function that, on the one hand, satisfies the required
criteria for a local or global buffer function and, on the
other hand, computes adequate membership grades. In gen-
eral, determining adequate membership grades for a given
fuzzy raster map is a problem. However, there are experi-
ments showing that fuzzy membership grades are quite ro-
bust, which means that it is not necessary to have precise
estimations of these grades (Bloch 2000). The explanation
given for this observation is twofold: first, fuzzy member-
ship grades are used to describe imprecise information and
therefore do not have to be precise, and second, each indi-
vidual fuzzy membership grade plays only a minor role in
the whole reasoning process, as it is usually combined with
several other membership grades. However, the ranking of
membership grades must be preserved, which is in accor-
dance with our findings in the context of spatial persistence
(Guesgen & Hertzberg 1996).
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