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Abstract. The paper presents current results of our work onDD& P, a two layer
control architecture for autonomous robots.DD& P comprises a deliberative and
a behavior-based part as two peer modules with no hierarchy among these two
layers, as sketched in [HJZM98]. Interaction between these control layers is reg-
ulated by thestructureof the information flow, extending the “classical” sense-
model-plan-act principle. The paper stresses two architectural highlights of our
approach: The implementation of the “Plan-as-Advice” principle to execute plan
operators by the behavior-based part, and the grounding of the symbolic planner
description via chronicle recognition.

1 Background and Overview

There are several good reasons to include a behavior-based component in the control
of an autonomous mobile robot. There are equally good reasons to include in addition
a deliberative component. Having components of both types results in ahybrid control
architecture, intertwining the behavior-based and the deliberative processes that go on
in parallel. Together, they allow the robot to react to the dynamics and unpredictability
of its environment without forgetting the high-level goals to accomplish. Arkin [Ark98,
Ch. 6] presents a detailed argument and surveys hybrid control architectures; the many
working autonomous robots that use hybrid architectures include the Remote Agent
Project [MNPW98,Rem00] as their highest-flying example.

While hybrid, layered control architectures for autonomous robots, such as Saphira
[KMSR97] or 3T [BFG+97] are state of the art, some problems remain that make it
a still complicated task to build a control system for a concrete robot to work on a
concrete task. To quote Arkin [Ark98, p. 207],

the nature of the boundary between deliberation and reactive execution is not
well understood at this time, leading to somewhat arbitrary architectural deci-
sions.

This boundary can be split into two different sub-problems:
(1) The symbolic world representationupdateproblem, which is an instance of

thesymbol grounding problem[Har90]. There are solutions to important parts of that
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problem, such as methods and algorithms for sensor-based localization to reason about
future navigation actions: [FBT99] presents one of the many examples for on-line robot
pose determination based on laser scans. If the purpose of deliberation is supposed to be
more general than navigation, such as action planning or reasoning about action, then
the need arises to sense more generally the recent relevant part of the world state and up-
date its symbolic representation based on these sensor data. We call this representation
the currentsituation.

The naive version of the update problem “Tell me all that is currently true about the
world!” needs not be solved, luckily, if the goal is to build a concrete robot to work on
a concrete task.Only those facts need updating that, according to the symbolic domain
model used for deliberation, are relevant for the robot to work on its task.Then, every
robot has itssensor horizon,i.e., a border in space and time limiting its sensor range.
The term sensor is understood in a broad sense: It includes technical sensors like laser
scanners, ultra sound transducers, or cameras; but if, for example, the arena of a deliv-
ery robot includes access to the control of an elevator, then a status request by wireless
Ethernet to determine the current location of the elevator cabin is a sensor action, and
the elevator status is permanently within the sensor horizon. This information is com-
pleted by invariable world state descriptions e.g., global maps of the environment. We
assume:The persistent world state together with the variable information within the
sensor horizon is sufficient to achieve satisfying robot performance.

This said, the task of keeping the facts of a situation up-to-date remains to contin-
ually compute from recent sensor data and the previous situation a new version of the
situation as far as it lies within the sensor horizon. The computation is based on plain,
current sensor values as well as histories of situations and sensor readings or aggregates
thereof. Practically, we cannot expect to get accurate situation updates instantly; all we
can do is make the situation update as recent, comprehensive, and accurate as possible.

(2) Theexecutionof symbolic plans in the physical world. Given a plan, the robot
must, first, determine whether the plan is still valid and which step is next for execution,
and, second, act in the world according to this current plan step. At presentDD& P offers
nothing original for the first part, and this paper does not go into any detail concerning
it. As in many other hybrid robot control systems in the sequence of STRIPS/Shakey’s
triangle tables [FHN72], we assume that an execution monitor component permanently
determines the progress and feasibility of the recent plan, based on the permanently
ongoing symbolic world representation update just described.

For the part of acting concretely according to the current symbolic plan step, the
problem is that the abstraction from worldly detail that is wanted and unavoidable for
effective planning, makes the translation into, say, physical motion non-unique. On the
one hand, immediate reaction to unforeseen events, such as navigating around persons
while following a planned trajectory in a crowded hallway, has to dominate the to-be-
executed plan: reaction overwrites plan step execution. On the other hand, the robot
must stick to its plan, tolerating momentary disadvantages over greedy reactive behav-
ior, to achieve coherent, goal-oriented performance in the long run: plan step execution
overwrites reaction. So, executing a plan means permanently negotiating between the
forces urging to react and the desire to stick with the plan. Every hybrid robot control
architecture must cope with that.



Our view of building hybrid robot controllers involving a behavior-based robot con-
trol system (BBS)[Mat99] as reactive component is shaped by our work in progress
on theDD& P robot control architecture [HJZM98,HS01,SCHC01]. The demo example
we will present is formulated in a concrete BBS framework, namely, Dual Dynamics
(DD, [JC97]) and we will illustrate how to blend it with classical propositional action
planners.

The rest of this paper is organized as follows. In Sec. 2, we present our approach of
formulating BBSs as dynamical systems and give a detailed example in Sec. 3. Sec. 4
discusses our view on a concrete planning system in general. Sec. 5 and Sec. 6 contain
the technical contribution of the paper: we first sketch how we assume the deliberation
component interferes the BBS control component, and then describe the technique of
extracting facts from BBS activation value histories. Sec. 7 discusses the approach and
relates it to the literature. Sec. 8 concludes.

2 BBSs as dynamical systems

We assume a BBS consists of two kinds of behaviors: low-level behaviors (LLBs),
which are directly connected to the robot actuators, and higher-level behaviors (HLBs),
which are connected to LLBs and/or HLBs. Each LLB implements two distinct func-
tions: a target function and an activation function. The target function for the behavior
b provides the referencetb for the robot actuators (”what to do” ) as follows:

tb = fb(s
T ; sTf ; �

T
LLB) (1)

wherefb is a nonlinear vector function with one component for each actuator variable,
sT is the vector of all inputs from sensors,sTf is the vector of the sensor-filters and�TLLB
is the vector of activation values of the LLBs. By sensor-filters – sometimes called
virtual sensors – we meanmarkovianandnon-markovianfunctions used for processing
specific information from sensors.

The LLB activation functionmodulatesthe output of the target function. It provides
a value between 1 and 0, meaning that the behavior fully influences, does not influence
or influences to some degree the robot actuators. It describeswhento activate a behavior.
For LLB b the activation value is computed from the followingdifferential equation:

_�b;LLB = gb(�b;LLB; OnFb; OffFb; OCTb) (2)

Eq. 2 gives the variation of theactivation value�b;LLB of this LLB. gb is a nonlinear
function.OCTb allows the planner to influence the activation values, see Sec. 5. The
scalar variablesOnFb andOffFb are computed as follows:

OnFb = ub(s
T ; sTf ; �

T
LLB; �

T
HLB) (3)

OffFb = vb(s
T ; sTf ; �

T
LLB; �

T
HLB) (4)

whereub andvb are nonlinear functions. The variableOnFb sums up all conditions
which recommend activating the respective behavior (on forces) andOffFb stands for



adversary conditions to the respective behavior (off forces). The definitions in Eqs. 2 - 4
are exemplified in the next section.

The HLBs implement only the activation function. They are allowed to modulate
only the LLBs or other HLBs on the same orlower level. In our case, the change of
activation values for the HLBs�b;HLB are computed in the same manner as Eq. 2. To
result in a stable control system, the levels must “run” on a differenttimescale; HLBs
change activation only on a longer term, LLBs on a shorter term.

In the original Dual Dynamics paper [JC97] Eq. 1 was also implemented as a dif-
ferential equation – therefore the name Dual Dynamics. The globalmotor controller
is now integrated into the microcontroller of our robot, making behavior design inde-
pendent from effects like battery values or floor surface. This avoids the integration of
theclosed-loopcontroller locally intoeverytarget function and allows the use of much
easier to handle absolute output values. The overall result is very similar to the original
approach.

The reason for updating behavior activation in the form of Eq. 2 is this. By referring
to the previous activation value�b, it incorporates a memory of the previous evolution
which can be overwritten in case of sudden and relevant changes in the environment,
but normally prevents activation values from exhibiting high-frequency oscillations or
spikes. At the same time, this form of the activation function provides somelow-pass
filtering capabilities, damping sensor noise or oscillating sensor readings.

Independent from that, it helps to develop stable robot controllers if behavior ac-
tivations have a tendency of moving towards their boundary values, i.e., 0 or 1 in our
formulation. To achieve that, we have implementedgb in Eq. 2 as abistableground
form (see [BK01] Sec. 4 for details) providing somehysteresis effect. Without further
influence, this function pushes activation values lower/higher than some threshold�
(typically � = 0:5) softly to 0/1. The activation value changes as a result ofaddingthe
effects coming from the variablesOnF , OffF , OCT and the bistable ground form.
Exact formulations of thegb function are then just technical and unimportant for this
paper, [KJ02] gives a detailed description.

The relative smoothness of activation values achieved by using differential equa-
tions and bistability will be helpful later in the technical contribution of this paper ,
when it comes to derive facts from the time series of activation values of the behaviors
(Sec. 6).

In our BBS formulation, behavior arbitration is achieved using the activation values.
As shown in Eqs. 2 - 4, each behavior can interact with (i.e., encourage or inhibit) every
other behavior on the same or lower level. The model of interaction between behaviors
is defined by the variablesOnF andOffF .

The output vector orreference vectorr of the BBS for the robot actuators is gener-
ated by summing all LLB outputs by amixer, as follows:

r = �
X
b

�b;LLBtb (5)

where� = (1=
P

b �b;LLB) is a normalization factor.
Together with the form of the activation values, this way of blending the outputs of

LLBs avoidsdiscontinuitiesin the reference valuesri for the single robots actuators,



such as sudden changes from full speed forward to full speed backward. One could
even use voting, “winner-takes-all” or priority-based behavior selection mechanisms
very easily, if desired.

DD has recently been extended withteam variables[BK01], which are exported by
a behavior system, so that other behavior systems (robots) can read their current values.
For every team variable only the exporting behavior systems is allowed to change its
value, for all others it’s value is read-only. This mechanism adds multi-robot coopera-
tion capabilities into the DD framework, fitting perfectly in the global context of agent
technology [Age] in which we are doing this work.

DD differs from most other BBS, e.g. [Ark98,SKR95,Ros97], by using dynami-
cal system theory for the definition andanalysisof behaviors. Furthermore this struc-
ture supports a practical interface for the integration of a deliberative control layer, see
Sec. 5, 6. The implementation, evaluation and analysis of DD behaviors for different
types of robots is supported by a set of tools [Bre00,BGG+99], cf. Fig.1.

Fig. 1. Screen shots from the most recent version of the DDDesigner tools [Bre00,BGG+99].
These tools mainly comprise an graphical user interface, where DD models can be specified in an
intuitive high-level language; automatic code generators for simulation, monitoring, and different
kinds of robot hardware; a simulator; and a monitoring environment for wireless online tracing
of information processing on board the running robot.

3 An Example

To illustrate the notation of Sec. 2 we give a demonstration problem consisting of the
task of following a wall with a robot and entering only those doors that are wide enough



to allow the entrance. Figure 2 gives an overview about the main part of our arena. The
depicted robot is equipped with a short distance laser-scanner, 4 infrared side-sensors,
4 front/back bumpers and some dead-reckoning capabilities.

Fig. 2.The left picture shows the demo arena and the final robot pose in Example 1. The robot has
started its course at the lower right corner, below to the round obstacle. The right picture shows
our office navigation robot KURT2 which was simulated in the example.

We used a simulator based on the DDDesigner prototype tool [Bre00,BGG+99].
The tool allows checking isolated behaviors or the whole BBS in designated environ-
mental situations (configurations).

The control system contains three HLBs and six LLBs, depicted in Tab. 1, with
RobotDirection andRobotV elocity as references for the two respective actuators.

Most of the implemented behaviors are common for this kind of tasks. However,
we decided to split the task of passing a door in a sequence of two LLBs. This helps
structure, maintain and independently improve these two behaviors. The implementa-
tion of these behaviors used in this study are deliberately non-sophisticated in order to
test the power of the chronicle recognition described below (Sec. 6) in the presence of
unreliable behaviors.

To give a simplified example of BBS modeling, here are the “internals” ofWander:

OnFWander = k1(1� �CloseToDoor) � (1� �FollowRightWall) � (6)

(1� �FollowLeftWall) � (1� �AvoidColl)

OffFWander = k2�AvoidColl + k3�CloseToDoor + (7)

k4�FollowRightWall + k5�FollowLeftWall

RobotDirectionWander = randomDirection() (8)

RobotV elocityWander = mediumSpeed (9)



The HLBs are the following:
CloseToDoor is activated if there is evidence for a door;
InCorridor is active while the robot moves inside a corridor;

was implemented in order to avoid getting stuck in a situation,
TimeOut like two robots blocking each other by trying to pass a door

from the opposite sides;
The LLBs are the following:

is depending onCloseToDoor and gets activated if the robotTurnToDoor
is situated on a level with a door;

GoThruDoor is activated after the behavior TurnToDoor was successful;
FollowRightWall is active when a right wall is followed;
FollowLeftWall is active when a left wall is followed;
AvoidColl is active when there is an obstacle in the front of the robot
Wander is active when no other LLB is active.

Table 1.Overview of the Example 1 behaviors. Even if some of their names e.g.,CloseToDoor
andInCorridor, suggest predicate names, they are allbehaviors.

tWander =

�
RobotDirectionWander

RobotV elocityWander

�
(10)

_�Wander = gWander(�Wander; OnFWdr; OffFWdr; OCTWdr) (11)

wherek1 : : : k5 are empirically chosen constants.randomDirection() could be every
function that generates a direction which results in a randomly chosen trajectory.

Due to itsproductform, OnFWander can only be significantly greater than zero if
all included�b are approximately zero.OffFWander consists of asumof terms allow-
ing every included behavior to deactivateWander. Both terms are simple and can be
calculated extremely fast, which is a guideline for most BBSs. TheOCT term will be
explained in the next section. In general, DD terms have a very modular structure – sum
of products – which permits thoughtful adaptability to new situations and/or behaviors.

Fig. 3 shows theactivation value historiesgenerated during a robot run, which will
be referred to as Example 1. The robot starts at the right lower edge of the arena in Fig. 2
with Wander in control for a very short time, until a wall is perceived. This effect is
explained by Eq. 6. While the robot starts to follow the wall, it detects the small round
obstacle in front. In consequence, two LLBs are active simultaneously:AvoidColl and
FollowLeftWall. Finally, the robot follows the wall, ignores the little gap and enters the
door. In the examples for this paper,FollowRightWall is always inactive and therefore
not shown in the activation value curves.

This exemplifies the purpose of aslowincrease in behavior activation.FollowLeftWall
should only have a strong influence to the overall robot behavior if a wall is perceived
with both side-sensors for some time, so as to be more sure that the robot really has
sensed a wall. The small dent in the activation ofFollowLeftWall (around the time
t = 4) is explained by perceiving free space with one side-sensor. If both side-sensors
detect free space this behavior would be deactivated. The turning to the door is de-
scribed by rising/falling edges of some activation values. The second rise ofAvoidColl
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Fig. 3.The activation value histories for Example 1. The numbers are time unit for reference.

(after t = 22) is caused by the door frame, which pops into sight as a close obstacle
at the very end of the turning maneuver. Effectively, the collision avoidance guides the
robot through the door. FinallyGoThruDoor gets slowly deactivated allowing other
behaviors to take control of the robot.

The HLBsCloseToDoor andInCorridor describe global states, thereby modulating
the interaction, activation and sequencing of the LLBs. Some other remarks on behavior
arbitration in DD: Our approach is neither purely competitive nor cooperative, allowing
internal or external constraints and degree of freedom to be reflected flexibly. For ex-
ampleTurnToDoor andFollowLeftWall are mutually exclusive, whileFollowLeftWall
andAvoidColl are cooperative.

4 Deliberation in DD& P

At the current work state we have identified some constraints on useful planning sys-
tems which arise from the targeted application area [Age], which comprises industrial
production, delivery services or inaccessible environments.Soundnessandcomplete-
nessof the planning system are non-relaxable restrictions in service robotics. Otherwise
we could get no guarantee that plans for solvable missions get in fact generated, which
is requested by most service robotic clients. The usage ofheuristicshas to be consid-
ered very carefully under this assumption. From the conceptual point of view,DD& P is
able to work with almost any kind of planner, which we will show in the next section.
Please not that the successful plan generation means in now way the successful plan



execution. We just want to exclude additional sources of uncertainty from the planning
component.

One should be aware that even a reliable knowledge base update process is not
immune against generatingirrelevant facts. Irrelevant means that these facts are not
needed for any solution of the current planning problem. They can enlarge the planner’s
search space and thereby its search time dramatically. There is work ongoing about
solving this problem from the planner side, like e.g. RIFO [NDK97] – which has the
disadvantage of not being completely solution preserving.

We are not developing our own planner(s). We are modeling our symbolic task
description in (subsets of) PDDL 2.1 [FL01] which enables us to use the full variety
of “off-the-shelf planners” that can be downloaded from the Internet. Our idea is to
use existing and fastpropositionalsystems which generate even non trivial plans very
quickly. The hypothesis is that a “throw-away-plan” approach is practically superior
to the use of more sophisticated planners. A probabilistic one promises more reliable
plans, yet taking much more time for generation. Furthermore assigning probabilities is
far from trivial.

In terms of implementation (see Fig. 4), we are currently thinking about IPP [KNHD97]
as it adds to pure propositional planning some expressivity (ADL operators) which can
be easily expressed in PDDL. An HTN-Planner like SHOP [NCLMA99] is a potential
alternative. It permits the use of domain knowledge by decomposing tasks into sub-
tasks and handling domain constraints. This even includes a kind ofplan correction
capability by backtracking other decompositions of high-level (sub-)goals in case of
unexecutable actions.

Note that we are not restricting the deliberation part to exactly one planner or to
one single planning level. Plans may make sense for a robot in different varieties, on
different, possibly unconnected levels of abstraction, and on different degrees of com-
mitment. For example, a path plan and an action plan differ in specificity and, conse-
quently, can efficiently be generated by different algorithms, yet they are both part of
the robot’s deliberation. Plans on a social level tend to be more abstract than those on
individual robot mission level. To yield a satisfying and coherent overall performance,
such different plans need to be coordinated in the end. However,DD& P does not achieve
this harmonization by forcing the robot domain modeler to employ exactly one planner,
but currently leaves open the structure of the deliberative control part.

From the propositional planner point of view execution of an action in the current
plan is finished if its specified postconditions hold in the knowledge base or if a re-
planning process is started. The first one permits skipping of unnecessary actions like
opening an already open door. These kind of symbolic actions can arise from different
conditions, e.g. imperfect knowledge base entries. Replanning can occur if atime-out
conditionsignals a flaw in the execution, the final state of the current plan is achieved,
or a serious change in the knowledge-base has been recognized. Serious changes means
a new “high-priority” goal or dramatic changes to the current plan, like an inoperative
elevator which “cuts off” wide operation areas from the robot. How to define and detect
such serious changes is a non-trivial task and lies out of the scope of this paper.



Fig. 4.A “closer-view” on the deliberation part ofDD& P. As we do not assume that the system’s
knowledge base is accurate, it is more aptly called belief base (BB). It includes the current world
state and goals. TheModeleris updating the world state in the BB, via chronicle recognition (see
Sec. 6) or external input, e.g. form other agents. TheExecutoris biasing behaviors towards the
current to be executed action, and monitoring its results. See text for details.

5 From symbols to action: Blending behaviors with operators

This section sketches the control flow from the planner to the BBS. The basic idea
is this: One of the action planners discussed in Sec. 4 continually maintains a current
action plan, based on the current situation and the current set of externally-provided
or self-generated mission goals. Based on the current plan and the current situation,
an execution component picks one of the operators in the plan as the one currently to
be executed. Plan execution is done in aplans-as-advice[Pol92,PRK90,Suc87] fashion:
Executing an operator means stimulating more or less strongly the behaviors working in
favor of the operator, and muting those working against its purpose. This does not mean
rigid control, rather giving some degree of freedom to the BBS to react to unforeseen
situations, like obstacles, batteries going down or other events which we discuss at the
end of Sec. 7, basing concrete execution in the world more on fresh sensor data than
on the planner’s advice. Which operator stimulates or mutes which behaviors is an
information that the domain modeler has to provide along with the domain model for
the deliberative component and the set of behaviors for the BBS.

Therefore we first introduce the so-calledinfluence-matrixI with Ib;op 2 R, which
encodes whether and how the current ground operatorop 2 OP influences the behavior
b through the termOCTb.

Technically, the influence of thecurrentoperator is “injected” into the BBS in terms
of the Operator-Coupling-Terms(OCT ) in the activation functions, see Eqs. 2. The
influence of thecurrent ground operatorop gets inside every behaviorb through the



termOCTb, as follows:

OCTb = jIb;opj(sign
+(Ib;op)� �b) (12)

wheresign+ is +1 if x > 0 and0 else.Ib;op 6= 0 iff op influences the behaviorb.
Its sign expresses whether the operator influence is of the stimulating or muting sort:
If Ib;op > 0, then the respective behavior is stimulated, and muted ifIb;op < 0. The
absolute value ofIb;op models the strength of the operator influence on the behaviorb.

To give an example, assume that the domain model for the deliberation component
includes an operator variableGO-IN-RM (x) modeling the action of some office delivery
robot to go (from wherever it is) to and enter roomx. Let the behavior inventory be the
one specified in Sec. 3. Here is a selection ofIb;GO-IN-RM (x)-column for the influence of
a ground operator likeGO-IN-RM (A) for a concrete room A:

. . . . GO-IN-RM(x) . . . .
CloseToDoor . . . . 5 . . . .
InCorridor . . . . 0 . . . .
TimeOut . . . . 0 . . . .
TurnToDoor . . . . 0 . . . .
GoThruDoor . . . . 0 . . . .
FollowRightWall . . . . -5 . . . .
FollowLeftWall . . . . -5 . . . .
AvoidColl . . . . 0 . . . .
Wander . . . . -2 . . . .

Table 2.A selection of the influence-matrixI. See text for details.

Note that in Tab. 2Ib;op 2 [�40; 40] which is in relation to the actual implemen-
tation of low-level behaviors “running” with 40 iterations per second. To discuss some
values in detail:ICloseToDoor;GO-IN-RM (x) 6= 0 means that this behavior is influenced if
GO-IN-RM (x) is chosen to be executed. In this case, its largepositivevalue stimulates
CloseToDoor strongly. With the same strengthFollowRightWall andFollowLeftWall
are muted whileWander is only muted slightly.

The zero influence onTurnToDoor or GoThruDoor does in no way mean that it is
not needed to executeGO-IN-RM (x). The activation ofTurnToDoor is directly depend-
ing on the sensor context – perceiving a gap – and on the activation ofCloseToDoor
which is influenced by this operator. FurthermoreGoThruDoor can only be activated
in a successful sequence withTurnToDoor, see Sec. 3.

On the other sideGO-IN-RM (x) can only be chosen for execution if its precondition
CloseTo(x) is true in the knowledge base, which also gives strong evidence to be close
to the door of room A. Accordingly we are combining the already available capabilities
of the BBS in a natural way with that one of the deliberative part.



6 From (re-)action to symbols: Extracting facts from activation
values

We now turn to the method for extracting facts from activation value histories. It is
influenced by previous work on chronicle recognition, such as [Gha96].

To start, take another look at the activation curves in Fig. 3 in Sec. 3. Some irregular
activation time series occur due to the dynamics of the robot/environmen interaction,
such as early in theAvoidColl andWander behaviors. However, certain patterns re-
occur for single behaviors within intervals of time, such as a value being more or less
constantly high or low, and values going up from low to high or vice versa. The idea
to extract symbolic facts from activation values is to consider characteristic groups or
gestaltsof such qualitative activation features occurring inchroniclesover time.

To make this precise, we define, first,qualitative activation values(or briefly, qual-
itative activations) describing these isolated patterns. In this paper, we consider four
of them, which are sufficient for defining and demonstrating the principle, namely, ris-
ing/falling edge, high and low, symbolized by predicates*e, +e, Hi, andLo, respec-
tively. In general, there may be more qualitative activations of interest, such as a value
staying in a medium range over some period of time. For a behaviorb and time interval
[t1; t2], they are defined as

Hi(b)[t1; t2] � �b[t] � h for all t1 � t � t2

Lo(b)[t1; t2] � �b[t] � l for all t1 � t � t2

*e(b)[t1; t2] � �b[t1] = l and �b[t2] = h and (13)

�b increasesgenerally monotonicallyover[t1; t2]

+e(b)[t1; t2] � �b[t1] = h and �b[t2] = l and (14)

�b decreasesgenerally monotonicallyover[t1; t2]

for given threshold values0 � h � 1 and 0 � l � 1, where�b[t] denotes the
value of�b at timet. General monotonicityrequires another technical definition. We
are using a simple first order discrete time filter, the details of which are beyond the
scope of this paper. The idea is that some degree of noise should be allowed in, e.g.,
an increasing edge, making the increase locally non-monotonic. In the rather benign
example activation curves in this paper, regular monotonicity suffices. Similarly, it is not
always reasonable to use the global constantsh; l asHi andLo thresholds, respectively.
It is possible to use different threshold constants or thresholding functions for different
behaviors. We do not go into that here. Then, it makes sense to require a minimum
duration for[t1; t2] to prevent useless mini intervals ofHi and Lo types from being
identified. Finally, the strict equalities in Eq.s 13 and 14 are unrealistic in real robot
applications, where two real numbers must be compared, which are seldom strictly
equal. Equality�� is the solution of choice here.

The key idea to extract facts from activation histories is to consider patterns of qual-
itative activations of several behaviors that occur within the same interval of time. We
call these patternsactivation gestalts.We express them formally by a time-dependent
predicateAG over a setQ of qualitative activations of potentially many behaviors. For
a time interval[t; t0] the truth ofAG(Q)[t; t0] is defined as the conjunction of conditions



on the component qualitative activationsq 2 Q of behaviorsb in the following way:

caseq = Hi(b) then Hi(b)[t; t0]

caseq = Lo(b) then Lo(b)[t; t0]

caseq = *e(b) then *e(b)[t1; t2] for some[t1; t2] � [t; t0];

andLo(b)[t; t1] andHi(b)[t2; t0]

caseq = +e(b) then +e(b)[t1; t2] for some[t1; t2] � [t; t0];

andHi(b)[t; t1] andLo(b)[t2; t0]

Note that it is not required that different rising or falling edges inQ start or end syn-
chronously among each other or at the interval borders of[t; t0]—they only must all
occur somewhere within that interval.

For example,AG(f*e(GoThruDoor);+e(TurnToDoor);Hi(CloseToDoor)g) is true
over [20; 24] in the activation histories in Fig. 3; it is also true over[16; 23] (and there-
fore, also over their union[16; 24]), but not over[16; 25], asCloseToDoor has left its
Hi band by time25, and possibly the same forGoThruDoor, depending on the concrete
value of theh threshold.

A chronicleover some interval of time[t0; t] is a set of activation gestalts over sub-
intervals of[t0; t] with a finite set ofn linearly ordered internalinterval boundary points
t0 < t1 < � � � < tn < t. A ground fact is extracted from the activation history of a BBS
as true (or rather, asevident, see the discussion below) at timet if its defining chronicle
has been observed over some interval of time ending att. The defining chronicle must
be provided by the domain modeler, of course.

We give as an example the defining chronicle of the factInRoom that the robot
is in some room, such as the one left of the wall in Fig. 2.InRoom[t] is extracted
if the following defining chronicle (15) is true within the interval[t0; t], where theti
are existentially quantified. Combining a complex sequence of conditions takes into
account the wilful simplicity and unreliability of our BBS (see Sec. 3). Accordingly,
the resulting –reliable– chronicle looks a little bit longish:

AG(f+e(GoThruDoor)g)[t4; t]
^ AG(f*e(GoThruDoor);+e(TurnToDoor);Hi(CloseToDoor)g)[t3; t4]
^ AG(fHi(TurnToDoor; Lo(InCorridor)g)[t2; t3]
^ AG(f*e(TurnToDoor);*e(CloseToDoor);+e(InCorridor)g)[t1; t2]
^ AG(fHi(InCorridor)g)[t0; t1]
^ AG(fLo(TimeOut)g)[t0; t]

(15)

Assuming reasonable settings of theHi andLo thresholdsh; l, the following substitu-
tions of the time variables to time-points yield the mapping into the activation histories
in Fig. 3: t = 28 (right outside the figure),t0 = 3; t1 = 12; t2 = 16; t3 = 20; t4 = 24.
As a result, we extractInRoom[24].

This substitution is not unique. For example, postponingt0 until 5 or havingt1 ear-
lier at 9 would also work. This point leads to the process ofchronicle recognition:given
a working BBS, permanently producing activation values, how are the given defin-
ing chronicles of facts checked against that activation value data stream to determine
whether some fact starts to hold?



The obvious basis for doing this is to keep track of the qualitative activations as
they emerge. That means, for every behavior, there is a process logging permanently the
qualitative activations. For those of typeHi andLo, the sufficiently long time periods of
the respective behavior activation above and below theh; l thresholds, resp., have to be
recorded and, if adjacent to the current time point, appropriately extended. This would
lead automatically to identifying qualitative activations of typesHi andLo with their
earliest start point, such ast0 = 3 for Hi(InCorridor) in the example above. Qualitative
activations of types*e and+e are logged iff their definitions (eqs. 13 and 14, resp.) are
fulfilled in the recent history of activation values.

Qualitative activation logs are then permanently analyzed whether any of the exist-
ing defining chronicles are fulfilled, which may run in parallel to the ongoing process
of logging the qualitative activations. An online version of this analysis inspired by
[Gha96] would attempt to match the flow of qualitative activations with all defining
chroniclesc by means ofmatching frontsthat jump alongc’s internal interval boundary
pointsti and try to bind the next time pointti+1 as current matching front such that the
recent qualitative activations fit all sub-intervals ofc that end inti+1. Note that more
than one matching front may be active in every defining chronicle at any time. A match-
ing front inc vanishes if it reaches the end pointt (the defining chronicle is true), or else
while stuck atti is caught up by another matching front atti, or else an activation gestalt
over an interval ending atti+1 is no longer valid in the current qualitative activation his-
tory. The complexity of this process is O(jBehaviorsj* jChroniclesj*maxjAGsInChroniclej),
see [SCHC01] for details.

Practically, the necessary computation may be focused by specifying for each defin-
ing chronicle atrigger condition,i.e., one of the qualitative activations in the definition
that is used to start a monitoring process of the validity of all activation gestalts. For
example, in theInRoom definition above,*e(GoThruDoor), as occurring in the[t3; t4]
interval, might be used. Note that the trigger condition need not be part of the earli-
est activation gestalts in the definition. On appearance of some trigger condition in the
qualitative activation log, we try to match the activation gestalts prior to the trigger with
qualitative activations in the log file, and, if successful, verify the gestalts after the trig-
ger condition in the qualitative activations as they are being logged. [SCHC01] gives an
example where the derivation of theInRoom fact fails and a trigger condition would
save unnecessary matching effort.

Some more general remarks are in place here. Our intention is to provide fact ex-
traction from activation values as amainsource of information, not the exclusive one.
In general, the obvious other elements may be used for defining them: sensor read-
ings at some time points (be they physical sensors or sensor filters), and the validity
of symbolic facts at a time point or over some time interval. That type of information
can be added to the logical format of a chronicle definition as in (15). For example, if
the exact time point of entering a room with the robot’s front is desired as the starting
point of theInRoom fact, then this might be determined by the time within the inter-
val [t4; t] (i.e., within the decrease of theGoThruDoor activation) where some sensor
senses open space to the left and right again. As another example, assume that the fact
At(DoorA) for the door to some roomA may be in the fact base. ThenAt(DoorA)[t4]
could be added to the defining chronicle (15) above to derive not onlyInRoom[t], but



more specificallyInRoom(A)[t]. Such a position information can be easily derived
from a normal localization process like [Fox01]. This kind of knowledge base update
would be purely sensor related and orthogonal to chronicle recognition. This mecha-
nism can also be used for “instanciated actions” likeGO-IN-RM (A). Its preconditions
mentioned at the end of Sec. 5 would be generated by the planner’s knowledge base
ruleAt(x) ) CloseTo(x).

The fact extraction technique does not presume or guarantee anything about the
consistency of the facts that get derived over time. Achieving and maintaining consis-
tency, and determining the ramifications of newly emerged facts remain issues that go
beyond fact extraction. Pragmatically, we would not recommend to blindly add a fact
as true to the fact base as soon as its defining chronicle has been observed. A conse-
quent of a recognized defining chronicle should be interpreted as evidence for the fact
or as a facthypothesis,which should be added to the robot’s knowledge base only by
a more comprehensive knowledge base update process, which may even reject the hy-
pothesis in case of conflicting information. A possible solution would be to add some
integrity constraints to the defining chronicles, like addingInRoom(A) means deleting
all InRoom(y) with y 6= A. However, this is not within the scope of this paper.

7 Discussion

A physical agent’s perception categories must to some degree be in harmony with its ac-
tuator capabilities—at least in purposively designed technical artifacts such as working
autonomous robots.1 Our approach of extracting symbolic facts from behavior activa-
tion merely exploits this harmony for intertwining control on a symbolic and a reactive
level of a hybrid robot control architecture.

The technical basis for the exploitation are time series of behavior activation val-
ues. We have taken them from a special type of behavior-based robot control systems
(BBSs), namely, those consisting of behaviors expressed by nonlinear dynamical func-
tions of a particular form, as described in Sec. 2. The point of having activation val-
ues in BBSs is not new; it is also the case, e.g., for the behavior-based fuzzy control
part underlying Saphira [KMSR97], where the activation values are used for context-
dependentblendingof behavior outputs, which is similar to their use in our BBS frame-
work. Activation values also provide the degree of applicability of the corresponding
motor schemas in [Ark98, p. 141].

The activation values of a dynamical system-type BBS are well-suited for fact ex-
traction in that their formal background in dynamical systems theory provides both the
motivation and the mathematical inventory to make them change smoothly over time—
compare, e.g., the curves in Figure 3 with the ragged ones in [SRK99, Fig. 5.10]. This
typical smoothness is handy for definingqualitative activations,which aggregate par-
ticular patterns in terms of edges and levels of the curves of individual behaviors, which
are recorded as they emerge over time. These then serve as a stable basis for chronicle
recognition over qualitative activations of several behaviors. Note, however, that this

1 We do not speculate about biological agents in this paper, although we would conjecture that
natural selection and parsimony strongly favor this principle.



smoothness is a practical rather than a theoretical issue, and other BBS approaches may
serve as bases for fact extraction from activation values.

Using the system dynamics itself as information source seems to be a promising idea
even in the area of cognitive psychology. Making the program sensitive to patterns in
its own processing, the so calledself-watching, is an interesting commonality between
our ideas and the approach described by Marshall in [Mar99]. However, the targeted
application area differs completely from robot control: Marshall computationally mod-
els the fundamental mechanisms underlying human cognition on analogy-making in
ASCII-strings. In this microdomain, self-watching helps to understand how an answer
was found and to detect senseless looping in the system. The latter could be a interesting
extension for our approach.

We want to emphasize that the activation values serve three purposes in our case:
first, their normal one to provide a reliable BBS, second, to deliver the basis for extract-
ing persistent facts, and third, as an interface for biasing behaviors towards the current
symbolic action’s intension. With the second use, we save the domain modeler a signif-
icant part of the burden of designing a complicated sensor interpretation scheme only
for deriving facts. The behavior activation curves, as a by-product coming for free of
the behavior-based robot control, focus on the environment dynamics, be it induced by
the robot itself or externally. By construction, these curves aggregate the available sen-
sor data in a way that is particularly relevant for robot action. We have argued that this
information can be used as a main source of information about the environment; other
information, such as coming from raw sensor data, from dedicated sensor interpretation
processes, or from available symbolic knowledge, could and should be used in addition.

As activation values are present in a BBS anyway, it is possible to ”plug-in” the de-
liberative component to an already existing behavior system like the DD control system
in [BGG+99]. Yet, if a new robot control system is about to be written for a new ap-
plication area, things could be done better, within the degrees of freedom for variations
in behavior and domain model design. The ideal case is that the behavior inventory and
the fact set is in harmony in the sense that such facts get used in the domain model
whose momentary validity engraves itself in the activation value history, and such be-
haviors get used that produce activation values producing evidence for facts. For exam-
ple, a singleWallFollow behavior working for walls on the right and on the left, may
be satisfactory from the viewpoint of behavior design for a given robot application.
For the deliberative part, it may be more opportune to split it intoFollowLeftWall and
FollowRightWall, which would be equally feasible for the behavior control, but allows
more targeted facts to be deduced and behaviors to be biased directly. The fact extrac-
tion and behavior biasing scheme leaves the possibility to un-plug the deliberative part
from the robot control, which we think isessentialfor robustness of the whole robot
system.

Our technique is complementary to anchoring symbols to sensor data as described in
[CS01]. It differs from that line of work in two main respects. First, we use sensor data
as aggregated in activation value histories only, not raw sensor data. Second, we aim
at extracting ground facts rather than establishing a correspondence between percepts
and references to physical objects. The limit of our approach is that it is inherently
robot-centered in the sense that we can only arrive at information that has to do directly



with the robot action. The advantage is that, due to its specificity, it is conceptually and
algorithmically simpler than symbol anchoring in general.

Behavior(-sub)systems have been modeled as self-organizing dynamical systems
by other researchers, too. Steinhage presents an approach where the control architec-
ture is very strongly related to dynamical systems theories. Even position estimation,
sensor fusion, trajectory planning, event counting, or behavior selection is entirely de-
scribed in terms of differential equations, see e.g. [SS98] for details. From our point
of view, using a planner instead of coding all goal directed knowledge directly into
the BBS makes it much easier to define and change “high-level” mission goals and
to communicate plans between agents. Most robot control architecture used a kind of
situation dependingcontext– called context-dependend blending [SRK99] or sensor
context [SS98] – which helps regulating the behavior activation.DD& P supports this
context – via activation value biasing – in a very flexible way without “touching” the
BBS description. Validation of the overall architecture is even easier with a clear view
on the operator that is currently being executed.

DD& P permits users not familiar with BBS and robot control to define new tasks
for our robotsonly with formal logic. Following the principle of “Plan-as-Advice”, a
well-defined BBS and influence-matrix would even not allow the user to drive the robot
into a wall or to break down with empty batteries. This kind of effect can be even
used foropportunistictask execution. In a mail-delivery example, a person X that the
robot meets by chance on the corridor, can be handed over a letter directly, instead of
following the strict plan sequence which would lead – among others – to the office of
X. These effects can result from causal links in the current plan – similar to STRIPS’s
triangle tables [FHN72] – where an operator is skipped if its relevant postconditions
are already valid.Opportunisticmail-delivery to a person Y that is not included in the
current plan can only be achieved by pre-defined conditions.

The fact extraction technique can also be used to monitor the execution of actions.
With our example in Sec. 6 the execution of the symbolic actionEnterNextRoom can
be monitored, simply by means of post-conditions of actions, likeInRoom in this case.

Our approach is not in principle limited to a particular combination of deliberation
component and BBS, as long as the BBS is expressed as a dynamical system and in-
volves a looping computation of activation values for the behaviors. The method for
fact extraction from activation value histories of BBSs presented here is potentially ap-
plicable in BBS frameworks other than DD, so long as they are smooth enough to allow
some instance of chronicle recognition.

8 Conclusion

We have presented a new approach for extracting information about symbolic facts
from activation curves in behavior-based robot control systems. To this end, we use
already available, aggregated, filtered, and fused sensor-values instead of re-calculating
this data a second time in the symbol grounding component.

Updating the symbolic environment situation is a crucial issue in hybrid robot con-
trol architectures in order to bring to bear the reasoning capabilities of the deliberative
control part on the physical robot action as exerted by the reactive part. Unlike standard



approaches to sensing the environment in robotics, we are using the information hidden
in the temporal development of the data, rather than their momentary values. Therefore,
our method promises to yield environment information that is complementary to normal
sensor interpretation techniques, which can and should be used in addition.

Biasing behaviors instead of exerting hard control fits nicely into a general archi-
tectural design rule: Focusing action execution always on thecurrentstate of the world.
Additionally it offers the chance of opportunistical reactions to unforeseen events.

We have presented these techniques in principle as well as in terms of selected demo
examples in a robot simulator, which has allowed to judge the approach feasible and to
design the respective algorithms.

Work is ongoing towards a physically concurrent implementation ofDD& Pon phys-
ical robots, as described in [HS01]. We have recently implemented an alternative ap-
proach for fact extraction based on supervised learning [JHS02]. At the present time,
we are extending and improving the tools that are available in the context ofDD& P.
We are confident that a complex software system, like a robot control architecture, can
only get over the prototype stage if a proper programming environment is available that
supports its general applicability.
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